## ORIGINAL ARTICLE

# Molecular interactions of $\alpha$ -amino acids insight into aqueous $\beta$ -cyclodextrin systems

Deepak Ekka · Mahendra Nath Roy

Received: 4 March 2013/Accepted: 21 May 2013/Published online: 13 June 2013 © Springer-Verlag Wien 2013

Abstract Qualitative and quantitative analysis of molecular interaction prevailing in glycine, L-alanine, L-valine and aqueous solution of  $\beta$ -cyclodextrin ( $\beta$ -CD) have been probed by thermophysical properties. Density  $(\rho)$ , viscosity  $(\eta)$ , and ultrasonic speed (u) measurements have been reported at different temperatures. The extent of interaction (solute-solvent interaction) is expressed in terms of the limiting apparent molar volume  $(\phi_{\rm V}^0)$ , viscosity B-coefficient and limiting apparent molar adiabatic compressibility  $(\phi_K^0)$ . The changes on the enthalpy  $(\Delta H^*)$  and entropy ( $\Delta S^*$ ) of the encapsulation analysis give information about the driving forces governing the inclusion. The temperature dependence behaviour of partial molar quantities and group contributions to partial molar volumes has been determined for the amino acids. The trends in transfer volumes,  $\Delta \phi_{\rm V}^0$ , have been interpreted in terms of solute– cosolute interactions based on a cosphere overlap model. The role of the solvent (aqueous solution of  $\beta$ -CD) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.

**Keywords** Molecular interaction  $\cdot$  Amino acids  $\cdot$  β-Cyclodextrin  $\cdot$  Hydration number  $\cdot$  Thermophysical properties

D. Ekka  $\cdot$  M. N. Roy  $(\boxtimes)$ 

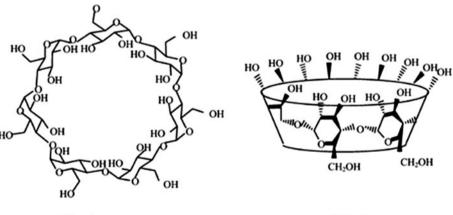
Department of Chemistry, University of North Bengal,

Darjeeling 734013, India

e-mail: mahendraroy2002@yahoo.co.in

#### Introduction

Cyclodextrin molecules (CD) are cyclic oligosaccharides that consist of six, seven, and eight glucopyranose units linked by  $\alpha$ -1,4 linkages, which were called  $\alpha$ ,  $\beta$  and γ-cyclodextrin respectively. Due to a lack of free rotation about the glycosidic bonds, they have a toroidal, truncated, and cone shape (Li and Purdy 1992), with an apolar, hydrophobic interior and two hydrophilic rims, formed by the primary -OH groups (narrow rim) and with all secondary -OH groups (wider rim) (Rafatia et al. 2005) located at one end of the torus-like molecule. Cyclodextrin molecules have a hydrophilic external surface but due to the presence of H atoms and -O- bonds, they are slightly polar having a clear affinity to encapsulate hydrophobic moiety in a largely hydrophobic internal cavity, which make the hydrophobic interaction between apolar moieties of host and guest molecules, that play an important role in the formation of inclusion complexes (Szejtli 1996; Disouza and Lipkowitz 1998) with a wide variety of molecular species (Thoma and Steward 1965) in different aqueous and non-aqueous solvent media (Ribeiro et al. 2006). Among the three most important cyclodextrins, β-cyclodextrin (β-CD) (with a cavity diameter of 6.4–7.5 Å) is the most interest because its cavity size allows for the best special fit for many common guest moieties (Clarke et al. 1988). For this reason, β-cyclodextrin is most commonly used as a complexing agent in hormones, vitamins, and many compounds frequently used in tissue and cell culture applications. This capability has also been of assistance for different applications in medicines, cosmetics, food technology, pharmaceutical, and chemical industries as well as in agriculture and environmental engineering as an encapsulating agent to protect sensitive molecules in hostile environment (Szejtli 1982;




Van Etten et al. 1967a, b). The molecular structure of β-CD is shown in Scheme 1.

The stabilization of native conformations of biological macromolecules is commonly related to several noncovalent interactions including hydrogen bonding, electrostatic, and hydrophobic interactions (Kumar Venkatesu 2012). These interactions are affected by the surrounding solutes and solvent molecules; for this reason, the physico-chemical behaviours of proteins are strongly influenced by the presence of solutes. Because of direct solute-solvent interactions and/or alteration of the water structure, these solutes can change many properties of globular proteins such as their hydration, solubility, stability and the activity of enzymes (Hippel and Schleich 1969; Jencks 1969). However, due to the complex conformational and configurational three-dimensional structures of proteins, direct investigations of the solute-solvent effect on these biological macromolecules are very challenging. Amino acids are basic component of proteins and are considered to be one of the important model compounds of protein molecules, which participate in all the physiological processes of living cells are quite helpful in understanding the water-protein-β-CD interactions in solutions. Especially viscometric and volumetric properties (such as viscosity B-coefficients and standard partial molar volumes) as well as changes in enthalpy and free energy in water and salts solutions can provide valuable clues for comprehending the protein unfolding (Enea and Jolicoeur 1982) and the hydrophobic interactions of non-polar side chains (Kauzmann 1959).

In the present study, we have attempted to ascertain the nature of solute–solvent/cosolute interactions of amino acids (glycine, L-alanine, and L-valine) in  $w_1 = 0.005$ , 0.0075, 0.01 mass fraction of aqueous  $\beta$ -cyclodexrtin ( $\beta$ -CD) binary mixtures at 293.15, 298.15, 303.15, and 308.15 K, as literature survey reveals that very scarce work has been carried out in the present ternary systems.

Scheme 1 The molecular structure of  $\beta$ -CD



Top view

## Side view

### **Experimental section**

Source and purity of samples

The studied salts (glycine, L-alanine, L-valine) and cosolute  $\beta$ -cyclodexrtin ( $\beta$ -CD), puriss grade was procured from Sigma-Aldrich, Germany and were used as purchased. The mass fraction purity of salts was  $\geq$ 0.99. The salts were dried from moisture at 373 K for 48 h, and then they were cooled and stored in a desiccator prior to use.

# Apparatus and procedure

Aqueous binary solution of  $\beta$ -cyclodexrtin ( $\beta$ -CD) was prepared by mass (Mettler Toledo AG-285 with uncertainty  $\pm 0.0003$  g), which are used as solvent. Stock solutions of the salts (amino acids) were also prepared by mass and the working solutions were obtained by mass dilution. The conversion of molarity into molality was accomplished using experimental density values. All solutions were prepared afresh before use. The uncertainty in molality of the solutions is evaluated to  $\pm 0.0001$  mol kg<sup>-3</sup>.

The densities of the solutions ( $\rho$ ) were measured by means of vibrating-u-tube Anton Paar digital density meter (DMA 4500 M) with a precision of  $\pm 0.00005$  g cm<sup>-3</sup> maintained at  $\pm 0.01$  K of the desired temperature. It was calibrated by triply distilled water and passing dry air.

Solution viscosity ( $\eta$ ) was measured by means of suspended Ubbelohde type viscometer, calibrated with triply distilled water, purified methanol, and dry air with dryer. A thoroughly cleaned and perfectly dried viscometer filled with experimental solution was placed vertically in a glasswalled thermostat (Bose Panda Instruments Pvt. Ltd.) maintained to  $\pm 0.01$  K of the desired temperature. After attaining thermal equilibrium, efflux times of flow were recorded with a stop watch. The flow times were accurate to  $\pm 0.1$  s. At least three repetitions of each data reproducible to  $\pm 0.1$  s were taken to average the flow times.

Adequate precautions were taken to minimize evaporation loses during the actual measurements. Viscosity of the solution is evaluated using the following appropriate equation as described earlier (Roy et al. 2012).

The ultrasonic speed (u) was measured by multi frequency ultrasonic interferometer (Model M-81) from Mittal Enterprises, India. The interferometer working at 5 MHz is based on the same principle as was used by Freyer et al. (1929) and Kiyohara et al. (1974). The obtained speeds were corrected for diffraction errors as given by Murthy and Subrahmanyam (1977). The uncertainty in the speed is  $\pm 0.2$  m s<sup>-1</sup>. The temperature was controlled within  $\pm 0.01$  K using a Lauda thermostat during the measurement.

#### Results and discussion

Apparent molar volume

The salts are freely soluble in all proportions of the solvent mixtures. The physical properties of binary mixtures in different mass fractions ( $w_1 = 0.005, 0.0075, 0.01$ ) of aqueous  $\beta$ -CD solutions at 293.15, 298.15, 303.15, and 308.15 K are reported in Table 1. The measured experimental values of densities, viscosities, and ultrasonic speeds of simple three amino acids in different mass fractions ( $w_1 = 0.005, 0.0075, 0.01$ ) of aqueous  $\beta$ -CD mixture at 293.15–308.15 K as a function of concentration (molality) are listed in Table 2. Volumetric properties, such as,  $\phi_V$ ,  $\phi_V^0$ , are regarded as sensitive tools for the understanding of interactions in solutions. The apparent

**Table 1** Values of density  $(\rho)$ , viscosity  $(\eta)$ , and ultrasonic speed (u) of aqueous β-CD in different mass fraction  $(w_1)$ , at 293.15–308.15 K

| Mass fraction of aq. β-CD | Temp<br>(K) | $\rho \times 10^{-3}$ (kg m <sup>-3</sup> ) |     | η (mPa | $\eta$ (mPa s) |         | $u \text{ (m s}^{-1})$ |  |
|---------------------------|-------------|---------------------------------------------|-----|--------|----------------|---------|------------------------|--|
| $(w_1)$                   |             | Expt                                        | Lit | Expt   | Lit            | Expt    | Lit                    |  |
| 0.005                     | 293.15      | 0.99999                                     | _   | 1.003  | _              | 1,484.4 | _                      |  |
|                           | 298.15      | 0.99873                                     | _   | 0.893  | _              | 1,499.5 | _                      |  |
|                           | 303.15      | 0.99747                                     | _   | 0.801  | _              | 1,508.7 | _                      |  |
|                           | 308.15      | 0.99622                                     | _   | 0.723  | _              | 1,517.2 | _                      |  |
| 0.0075                    | 293.15      | 1.00120                                     | _   | 1.005  | _              | 1,485.0 | _                      |  |
|                           | 298.15      | 0.99987                                     | _   | 0.895  | _              | 1,500.3 | _                      |  |
|                           | 303.15      | 0.99854                                     | _   | 0.803  | _              | 1,509.8 | _                      |  |
|                           | 308.15      | 0.99721                                     | _   | 0.725  | _              | 1,518.6 | _                      |  |
| 0.01                      | 293.15      | 1.00206                                     | _   | 1.007  | _              | 1,485.6 | _                      |  |
|                           | 298.15      | 1.00078                                     | _   | 0.897  | _              | 1,501.3 | _                      |  |
|                           | 303.15      | 0.99949                                     | _   | 0.805  | _              | 1,510.9 | _                      |  |
|                           | 308.15      | 0.99822                                     | -   | 0.727  | -              | 1,519.8 | -                      |  |

molar volume can be considered to be the sum of the geometric volume of the solute molecule and changes in the solvent volume due to its interaction with the solute. For this purpose, the apparent molar volumes  $\phi_{\rm V}$  were determined from the solutions densities using the following equation and the values are given in Table 3.

$$\phi_{\rm V} = M/\rho - 1,000 \,(\rho - \rho_0)/m\rho\rho_0 \tag{1}$$

where M is the molar mass of the salt, m is the molality of the solution,  $\rho$  and  $\rho_0$  are the density of the solution and aq.  $\beta$ -CD mixture respectively.

Table 3 shows that the values of  $\phi_V$  are large and positive for all the systems, suggesting strong solute–solvent interactions. The apparent molar volumes  $\phi_V$  were found to decrease with increasing molality (m) of amino acid in aqueous β-CD and increase with increasing temperature for all the amino acids under study. It is also found that the value increases linearly with increase in size of the alkyl chain of the amino acid and with increase in the mass fraction  $(w_1)$  of β-CD in solution. It indicates that the solute–solvent interactions increase with increasing concentration  $(w_1)$  of β-CD, size of the alkyl side chain of amino acids and temperature. The limiting apparent molar volumes  $\phi_V^0$  were obtained by a least-square treatment to the plots of  $\phi_V$  versus  $\sqrt{m}$  using the Masson equation (1929).

$$\phi_{\mathbf{V}} = \phi_{\mathbf{V}}^0 + S_{\mathbf{V}}^* \sqrt{m} \tag{2}$$

where  $\phi_V^0(=\bar{V}_2^0)$  is the apparent molar volume at infinite dilution and  $S_V^*$  is the experimental slope. The  $\phi_V^0$  values have been determined by fitting the dilute data  $(m < 0.1 \text{ mol kg}^{-1})$  to Eq. 3. The standard deviations  $(\sigma)$  were determined using the following equation:

$$\sigma = \sqrt{\frac{\sum (Y_{\text{exp}} - Y_{\text{obs}})^2}{N - 1}} \tag{3}$$

where N is the number of data points. The values of  $\phi_V^0$  and  $S_V^*$  are reported in Table 4. The plots of  $\phi_V$  against  $\sqrt{m}$  were found to be linear with negative slopes. At infinite dilution, each monomer of solute is surrounded only by the solvent molecules, and being infinite distant with other ones. It follows, therefore, that  $\phi_V^0$  is unaffected by solute—solute interaction and it is a measure only of the solute—solvent interaction (Millero 1971; Marcus and Hefter 2004). The  $\phi_V^0$  data are often embedded with important information of solute hydrophobicity, hydration properties, and solute—solvent interactions (Marcus 1993; Millero 1972) occurred in aqueous  $\beta$ -CD.

A perusal of Table 4 and Figs. 1, 2, and 3 shows that the values of  $\phi_V^0$  are large and positive for all the amino acids at all the investigated temperatures, suggesting the presence of strong solute–solvent interaction (Belibagli and



**Table 2** Experimental values of density  $(\rho)$ , viscosity  $(\eta)$ , and ultrasonic speed (u) of amino acids in different mass fraction of aqueous β-CD  $(w_1)$  at 293.15–308.15 K respectively

| $m \text{ (mol kg}^{-1})$ | $\rho \times 10^{-3}  (\text{kg m}^{-3})$ | η (mPa s) | $u \text{ (m s}^{-1})$ | $m \text{ (mol kg}^{-1}\text{)}$ | $\rho \times 10^{-3}  (\text{kg m}^{-3})$ | η (mPa s) | u (m s <sup>-1</sup> ) |
|---------------------------|-------------------------------------------|-----------|------------------------|----------------------------------|-------------------------------------------|-----------|------------------------|
| $w_1 = 0.005$             |                                           |           |                        |                                  |                                           |           |                        |
| Glycine + aq.             | β-CD                                      |           |                        |                                  |                                           |           |                        |
| $T = 293.15 \ K$          |                                           |           |                        | $T = 298.15 \ K$                 |                                           |           |                        |
| 0.0100                    | 1.00033                                   | 1.005     | 1,484.9                | 0.0100                           | 0.99906                                   | 0.895     | 1,500.8                |
| 0.0200                    | 1.00069                                   | 1.006     | 1,489.1                | 0.0200                           | 0.99940                                   | 0.896     | 1,506.0                |
| 0.0300                    | 1.00106                                   | 1.008     | 1,496.8                | 0.0301                           | 0.99974                                   | 0.898     | 1,514.7                |
| 0.0401                    | 1.00143                                   | 1.009     | 1,506.2                | 0.0401                           | 1.00009                                   | 0.899     | 1,525.6                |
| 0.0501                    | 1.00181                                   | 1.011     | 1,518.0                | 0.0502                           | 1.00045                                   | 0.901     | 1,539.8                |
| 0.0601                    | 1.00220                                   | 1.012     | 1,531.4                | 0.0602                           | 1.00080                                   | 0.902     | 1,555.9                |
| $T = 303.15 \ K$          |                                           |           |                        | $T = 308.15 \ K$                 |                                           |           |                        |
| 0.0100                    | 0.99779                                   | 0.803     | 1,512.3                | 0.0100                           | 0.99653                                   | 0.725     | 1,522.2                |
| 0.0201                    | 0.99812                                   | 0.804     | 1,517.9                | 0.0201                           | 0.99684                                   | 0.727     | 1,529.1                |
| 0.0301                    | 0.99845                                   | 0.806     | 1,527.8                | 0.0302                           | 0.99716                                   | 0.728     | 1,540.0                |
| 0.0402                    | 0.99878                                   | 0.807     | 1,540.0                | 0.0402                           | 0.99747                                   | 0.730     | 1,553.8                |
| 0.0502                    | 0.99912                                   | 0.809     | 1,555.0                | 0.0503                           | 0.99778                                   | 0.731     | 1,571.8                |
| 0.0603                    | 0.99946                                   | 0.810     | 1,573.1                | 0.0604                           | 0.99810                                   | 0.733     | 1,592.4                |
| Alanine + aq.             | β-CD                                      |           |                        |                                  |                                           |           |                        |
| $T = 293.15 \ K$          |                                           |           |                        | $T = 298.15 \ K$                 |                                           |           |                        |
| 0.0100                    | 1.00034                                   | 1.006     | 1,485.1                | 0.0100                           | 0.99907                                   | 0.896     | 1,502.8                |
| 0.0200                    | 1.00075                                   | 1.008     | 1,493.5                | 0.0200                           | 0.99946                                   | 0.898     | 1,512.5                |
| 0.0300                    | 1.00118                                   | 1.011     | 1,506.5                | 0.0301                           | 0.99988                                   | 0.901     | 1,527.4                |
| 0.0401                    | 1.00164                                   | 1.013     | 1,523.6                | 0.0401                           | 1.00032                                   | 0.903     | 1,546.5                |
| 0.0501                    | 1.00213                                   | 1.016     | 1,544.5                | 0.0502                           | 1.00078                                   | 0.906     | 1,570.1                |
| 0.0602                    | 1.00264                                   | 1.019     | 1,570.0                | 0.0602                           | 1.00126                                   | 0.909     | 1,599.8                |
| $T = 303.15 \ K$          |                                           |           |                        | $T = 308.15 \ K$                 |                                           |           |                        |
| 0.0100                    | 0.99780                                   | 0.804     | 1,514.4                | 0.0100                           | 0.99654                                   | 0.726     | 1,524.2                |
| 0.0201                    | 0.99817                                   | 0.807     | 1,525.5                | 0.0201                           | 0.99689                                   | 0.728     | 1,536.1                |
| 0.0301                    | 0.99857                                   | 0.809     | 1,542.4                | 0.0302                           | 0.99726                                   | 0.731     | 1,553.2                |
| 0.0402                    | 0.99899                                   | 0.812     | 1,564.0                | 0.0402                           | 0.99765                                   | 0.734     | 1,576.1                |
| 0.0503                    | 0.99942                                   | 0.815     | 1,590.2                | 0.0503                           | 0.99806                                   | 0.737     | 1,604.2                |
| 0.0603                    | 0.99987                                   | 0.818     | 1,621.3                | 0.0604                           | 0.99848                                   | 0.740     | 1,639.1                |
| Valine + aq. β            | -CD                                       |           |                        |                                  |                                           |           |                        |
| $T = 293.15 \ K$          |                                           |           |                        | $T = 298.15 \ K$                 |                                           |           |                        |
| 0.0100                    | 1.00036                                   | 1.007     | 1,487.1                | 0.0100                           | 0.99909                                   | 0.897     | 1,504.7                |
| 0.0200                    | 1.00082                                   | 1.011     | 1,499.0                | 0.0201                           | 0.99953                                   | 0.900     | 1,517.7                |
| 0.0301                    | 1.00133                                   | 1.015     | 1,517.1                | 0.0301                           | 1.00002                                   | 0.904     | 1,537.8                |
| 0.0401                    | 1.00187                                   | 1.019     | 1,541.1                | 0.0402                           | 1.00055                                   | 0.908     | 1,563.1                |
| 0.0502                    | 1.00247                                   | 1.023     | 1,569.3                | 0.0502                           | 1.00111                                   | 0.912     | 1,595.2                |
| 0.0602                    | 1.00310                                   | 1.027     | 1,604.0                | 0.0603                           | 1.00170                                   | 0.916     | 1,632.7                |
| $T = 303.15 \ K$          |                                           |           |                        | $T = 308.15 \ K$                 |                                           |           |                        |
| 0.0100                    | 0.99782                                   | 0.805     | 1,516.3                | 0.0100                           | 0.99656                                   | 0.727     | 1,526.1                |
| 0.0201                    | 0.99824                                   | 0.809     | 1,530.8                | 0.0201                           | 0.99696                                   | 0.730     | 1,542.0                |
| 0.0301                    | 0.99871                                   | 0.812     | 1,551.8                | 0.0302                           | 0.99740                                   | 0.734     | 1,564.8                |
| 0.0402                    | 0.99922                                   | 0.816     | 1,579.4                | 0.0403                           | 0.99788                                   | 0.738     | 1,594.9                |
| 0.0503                    | 0.99976                                   | 0.820     | 1,613.8                | 0.0504                           | 0.99839                                   | 0.742     | 1,631.8                |
| 0.0604                    | 1.00032                                   | 0.824     | 1,656.5                | 0.0605                           | 0.99892                                   | 0.745     | 1,676.0                |
| $w_1 = 0.0075$            |                                           |           |                        |                                  |                                           |           |                        |
| Glycine + aq.             | β-CD                                      |           |                        |                                  |                                           |           |                        |



Table 2 continued

| $m \text{ (mol kg}^{-1})$ | $\rho \times 10^{-3}  (\text{kg m}^{-3})$ | η (mPa s) | $u \text{ (m s}^{-1})$ | $m \text{ (mol kg}^{-1})$ | $\rho \times 10^{-3}  ({\rm kg \ m^{-3}})$ | η (mPa s) | $u \text{ (m s}^{-1})$ |
|---------------------------|-------------------------------------------|-----------|------------------------|---------------------------|--------------------------------------------|-----------|------------------------|
| T = 293.15 K              |                                           |           |                        | $T = 298.15 \ K$          |                                            |           |                        |
| 0.0100                    | 1.00154                                   | 1.006     | 1,485.6                | 0.0100                    | 1.00020                                    | 0.896     | 1,500.8                |
| 0.0200                    | 1.00189                                   | 1.008     | 1,490.7                | 0.0200                    | 1.00054                                    | 0.898     | 1,506.0                |
| 0.0300                    | 1.00226                                   | 1.009     | 1,498.3                | 0.0300                    | 1.00089                                    | 0.900     | 1,514.7                |
| 0.0400                    | 1.00264                                   | 1.011     | 1,508.7                | 0.0401                    | 1.00124                                    | 0.901     | 1,526.3                |
| 0.0500                    | 1.00302                                   | 1.013     | 1,521.0                | 0.0501                    | 1.00160                                    | 0.902     | 1,540.2                |
| 0.0601                    | 1.00341                                   | 1.014     | 1,536.5                | 0.0602                    | 1.00196                                    | 0.904     | 1,557.0                |
| $T = 303.15 \ K$          |                                           |           |                        | $T = 308.15 \ K$          |                                            |           |                        |
| 0.0100                    | 0.99886                                   | 0.805     | 1,512.5                | 0.0100                    | 0.99752                                    | 0.727     | 1,522.5                |
| 0.0200                    | 0.99918                                   | 0.807     | 1,518.7                | 0.0201                    | 0.99784                                    | 0.729     | 1,528.7                |
| 0.0301                    | 0.99951                                   | 0.808     | 1,528.1                | 0.0301                    | 0.99816                                    | 0.730     | 1,538.7                |
| 0.0401                    | 0.99985                                   | 0.810     | 1,540.9                | 0.0402                    | 0.99848                                    | 0.732     | 1,551.9                |
| 0.0502                    | 1.00019                                   | 0.811     | 1,556.2                | 0.0502                    | 0.99880                                    | 0.734     | 1,568.6                |
| 0.0602                    | 1.00053                                   | 0.813     | 1,574.3                | 0.0603                    | 0.99913                                    | 0.735     | 1,587.7                |
| Alanine + aq.             | β-CD                                      |           |                        |                           |                                            |           |                        |
| $T = 293.15 \ K$          |                                           |           |                        | $T = 298.15 \ K$          |                                            |           |                        |
| 0.0100                    | 1.00155                                   | 1.007     | 1,485.7                | 0.0100                    | 1.00021                                    | 0.897     | 1,503.3                |
| 0.0200                    | 1.00194                                   | 1.010     | 1,495.8                | 0.0200                    | 1.00058                                    | 0.900     | 1,513.9                |
| 0.0300                    | 1.00236                                   | 1.013     | 1,510.9                | 0.0301                    | 1.00099                                    | 0.902     | 1,529.9                |
| 0.0400                    | 1.00281                                   | 1.015     | 1,530.8                | 0.0401                    | 1.00142                                    | 0.905     | 1,551.6                |
| 0.0501                    | 1.00329                                   | 1.018     | 1,555.2                | 0.0501                    | 1.00187                                    | 0.908     | 1,577.7                |
| 0.0601                    | 1.00379                                   | 1.020     | 1,586.7                | 0.0602                    | 1.00234                                    | 0.910     | 1,609.3                |
| $T = 303.15 \ K$          |                                           |           |                        | $T = 308.15 \ K$          |                                            |           |                        |
| 0.0100                    | 0.99887                                   | 0.806     | 1,515.2                | 0.0100                    | 0.99753                                    | 0.728     | 1,525.2                |
| 0.0201                    | 0.99923                                   | 0.809     | 1,526.1                | 0.0201                    | 0.99789                                    | 0.731     | 1,537.6                |
| 0.0301                    | 0.99962                                   | 0.811     | 1,544.2                | 0.0301                    | 0.99827                                    | 0.733     | 1,555.7                |
| 0.0401                    | 1.00003                                   | 0.814     | 1,566.8                | 0.0402                    | 0.99867                                    | 0.736     | 1,580.8                |
| 0.0502                    | 1.00046                                   | 0.817     | 1,594.5                | 0.0503                    | 0.99909                                    | 0.739     | 1,610.4                |
| 0.0603                    | 1.00091                                   | 0.819     | 1,628.7                | 0.0604                    | 0.99953                                    | 0.741     | 1,645.9                |
| Valine + aq. β            | -CD                                       |           |                        |                           |                                            |           |                        |
| T=293.15~K                |                                           |           |                        | $T = 298.15 \ K$          |                                            |           |                        |
| 0.0100                    | 1.00157                                   | 1.009     | 1,486.9                | 0.0100                    | 1.00023                                    | 0.898     | 1,504.7                |
| 0.0200                    | 1.00201                                   | 1.013     | 1,498.9                | 0.0200                    | 1.00067                                    | 0.902     | 1,517.6                |
| 0.0300                    | 1.00252                                   | 1.017     | 1,517.0                | 0.0301                    | 1.00116                                    | 0.906     | 1,537.5                |
| 0.0401                    | 1.00306                                   | 1.021     | 1,541.7                | 0.0401                    | 1.00170                                    | 0.910     | 1,563.1                |
| 0.0501                    | 1.00367                                   | 1.025     | 1,570.8                | 0.0502                    | 1.00227                                    | 0.914     | 1,595.6                |
| 0.0602                    | 1.00429                                   | 1.030     | 1,605.4                | 0.0602                    | 1.00288                                    | 0.918     | 1,633.8                |
| $T = 303.15 \ K$          |                                           |           |                        | $T = 308.15 \ K$          |                                            |           |                        |
| 0.0100                    | 0.99889                                   | 0.807     | 1,516.5                | 0.0100                    | 0.99755                                    | 0.729     | 1,526.6                |
| 0.0201                    | 0.99931                                   | 0.811     | 1,530.9                | 0.0201                    | 0.99796                                    | 0.733     | 1,541.7                |
| 0.0301                    | 0.99979                                   | 0.815     | 1,551.8                | 0.0302                    | 0.99841                                    | 0.737     | 1,563.6                |
| 0.0402                    | 1.00030                                   | 0.819     | 1,579.3                | 0.0402                    | 0.99890                                    | 0.740     | 1,592.1                |
| 0.0503                    | 1.00085                                   | 0.822     | 1,613.3                | 0.0503                    | 0.99942                                    | 0.744     | 1,629.4                |
| 0.0603                    | 1.00143                                   | 0.826     | 1,656.4                | 0.0604                    | 0.99997                                    | 0.748     | 1,673.2                |
| $w_1 = 0.01$              |                                           |           |                        |                           |                                            |           |                        |
| Glycine + aq.             | β-CD                                      |           |                        |                           |                                            |           |                        |
| $T = 293.15 \ K$          |                                           |           |                        | T=298.15~K                |                                            |           |                        |
| 0.0100                    | 1.00240                                   | 1.009     | 1,486.3                | 0.0100                    | 1.00111                                    | 0.899     | 1,501.4                |



Table 2 continued

| m (mol kg <sup>-1</sup> ) | $\rho \times 10^{-3}  ({\rm kg \ m^{-3}})$ | η (mPa s) | u (m s <sup>-1</sup> ) | $m \text{ (mol kg}^{-1}\text{)}$ | $\rho \times 10^{-3}  ({\rm kg \ m^{-3}})$ | η (mPa s) | $u \text{ (m s}^{-1})$ |
|---------------------------|--------------------------------------------|-----------|------------------------|----------------------------------|--------------------------------------------|-----------|------------------------|
| 0.0200                    | 1.00276                                    | 1.010     | 1,491.4                | 0.0200                           | 1.00146                                    | 0.901     | 1,507.9                |
| 0.0300                    | 1.00313                                    | 1.012     | 1,499.2                | 0.0300                           | 1.00182                                    | 0.902     | 1,517.7                |
| 0.0400                    | 1.00351                                    | 1.013     | 1,510.2                | 0.0400                           | 1.00218                                    | 0.904     | 1,530.4                |
| 0.0500                    | 1.00390                                    | 1.015     | 1,523.3                | 0.0501                           | 1.00256                                    | 0.906     | 1,546.3                |
| 0.0600                    | 1.00430                                    | 1.017     | 1,539.0                | 0.0601                           | 1.00294                                    | 0.907     | 1,564.7                |
| $T = 303.15 \ K$          |                                            |           |                        | $T = 308.15 \ K$                 |                                            |           |                        |
| 0.0100                    | 0.99982                                    | 0.807     | 1,513.1                | 0.0100                           | 0.99854                                    | 0.728     | 1,523.1                |
| 0.0200                    | 1.00016                                    | 0.808     | 1,519.3                | 0.0201                           | 0.99888                                    | 0.730     | 1,530.6                |
| 0.0301                    | 1.00051                                    | 0.810     | 1,529.5                | 0.0301                           | 0.99923                                    | 0.732     | 1,541.6                |
| 0.0401                    | 1.00087                                    | 0.811     | 1,542.7                | 0.0401                           | 0.99959                                    | 0.733     | 1,556.3                |
| 0.0501                    | 1.00124                                    | 0.813     | 1,558.6                | 0.0502                           | 0.99996                                    | 0.735     | 1,573.7                |
| 0.0602                    | 1.00162                                    | 0.815     | 1,578.2                | 0.0603                           | 1.00033                                    | 0.737     | 1,594.6                |
| Alanine + aq.             | β-CD                                       |           |                        |                                  |                                            |           |                        |
| $T = 293.15 \ K$          |                                            |           |                        | $T = 298.15 \ K$                 |                                            |           |                        |
| 0.0100                    | 1.00241                                    | 1.010     | 1,486.4                | 0.0100                           | 1.00112                                    | 0.900     | 1,504.4                |
| 0.0200                    | 1.00281                                    | 1.012     | 1,498.8                | 0.0200                           | 1.00151                                    | 0.903     | 1,517.8                |
| 0.0300                    | 1.00325                                    | 1.015     | 1,516.9                | 0.0300                           | 1.00193                                    | 0.905     | 1,536.6                |
| 0.0400                    | 1.00373                                    | 1.018     | 1,539.7                | 0.0400                           | 1.00238                                    | 0.908     | 1,561.2                |
| 0.0500                    | 1.00422                                    | 1.020     | 1,568.8                | 0.0501                           | 1.00285                                    | 0.911     | 1,591.7                |
| 0.0600                    | 1.00474                                    | 1.023     | 1,602.9                | 0.0601                           | 1.00334                                    | 0.914     | 1,629.0                |
| $T = 303.15 \ K$          |                                            |           |                        | $T = 308.15 \ K$                 |                                            |           |                        |
| 0.0100                    | 0.99983                                    | 0.808     | 1,516.2                | 0.0100                           | 0.99855                                    | 0.730     | 1,526.3                |
| 0.0200                    | 1.00021                                    | 0.811     | 1,529.1                | 0.0201                           | 0.99892                                    | 0.733     | 1,540.8                |
| 0.0301                    | 1.00063                                    | 0.813     | 1,548.3                | 0.0301                           | 0.99932                                    | 0.736     | 1,561.9                |
| 0.0401                    | 1.00108                                    | 0.816     | 1,573.6                | 0.0402                           | 0.99975                                    | 0.738     | 1,588.1                |
| 0.0501                    | 1.00155                                    | 0.819     | 1,604.8                | 0.0502                           | 1.00020                                    | 0.741     | 1,622.2                |
| 0.0602                    | 1.00205                                    | 0.822     | 1,643.7                | 0.0603                           | 1.00067                                    | 0.744     | 1,663.3                |
| Valine + aq. β            | -CD                                        |           |                        |                                  |                                            |           |                        |
| $T = 293.15 \ K$          |                                            |           |                        | $T = 298.15 \ K$                 |                                            |           |                        |
| 0.0100                    | 1.00243                                    | 1.011     | 1,486.9                | 0.0100                           | 1.00114                                    | 0.902     | 1,505.0                |
| 0.0200                    | 1.00289                                    | 1.015     | 1,499.3                | 0.0200                           | 1.00158                                    | 0.906     | 1,518.6                |
| 0.0300                    | 1.00340                                    | 1.020     | 1,518.3                | 0.0300                           | 1.00208                                    | 0.910     | 1,538.8                |
| 0.0400                    | 1.00397                                    | 1.024     | 1,542.5                | 0.0401                           | 1.00262                                    | 0.914     | 1,565.0                |
| 0.0501                    | 1.00458                                    | 1.029     | 1,572.1                | 0.0501                           | 1.00320                                    | 0.918     | 1,597.2                |
| 0.0601                    | 1.00522                                    | 1.033     | 1,608.9                | 0.0602                           | 1.00382                                    | 0.922     | 1,637.3                |
| $T = 303.15 \ K$          |                                            |           |                        | $T = 308.15 \ K$                 |                                            |           |                        |
| 0.0100                    | 0.99985                                    | 0.809     | 1,516.9                | 0.0100                           | 0.99857                                    | 0.731     | 1,527.0                |
| 0.0200                    | 1.00028                                    | 0.813     | 1,531.7                | 0.0201                           | 0.99899                                    | 0.734     | 1,541.7                |
| 0.0301                    | 1.00077                                    | 0.816     | 1,553.5                | 0.0301                           | 0.99947                                    | 0.738     | 1,563.6                |
| 0.0401                    | 1.00130                                    | 0.821     | 1,581.3                | 0.0402                           | 0.99999                                    | 0.742     | 1,593.6                |
| 0.0502                    | 1.00188                                    | 0.825     | 1,616.3                | 0.0503                           | 1.00055                                    | 0.746     | 1,628.4                |
| 0.0603                    | 1.00250                                    | 0.829     | 1,658.9                | 0.0604                           | 1.00114                                    | 0.750     | 1,673.1                |

Agranci 1990). Furthermore, at each temperature, the values of  $\phi_V^0$  increase with increasing number of carbon atoms (or size of alkyl group) from Gly to Val. A similar increase in  $\phi_V^0$  with increasing number of carbon atoms for amino acids in aqueous glycerol, at 298.15 K, was also reported

by Banipal et al. (2001). The behaviour of  $\phi_V^0$  for the present systems can be explained employing the co-sphere model, proposed by Friedman and Krishnan (1973) according to which the effect of overlap of hydration cospheres is destructive. Mishra et al. (1983) using this model



Table 3 Molality (m), apparent molar volume  $(\phi_V)$ ,  $(\eta_r - 1)/\sqrt{m}$ , and apparent molar adiabatic compressibility  $(\phi_K)$  of amino acids in different mass fraction of aqueous β-CD  $(w_1)$  at 293.15–308.15 K respectively

| $m \text{ (mol kg}^{-1})$ | $\phi_{\rm V} \times 10^6 $ (m <sup>3</sup> mol <sup>-1</sup> ) | $(\eta_{\rm r} - 1)/\sqrt{m}$<br>(kg <sup>1/2</sup> mol <sup>-1/2</sup> ) | $\phi_{\rm K} \times 10^{11}$ (m <sup>3</sup> mol <sup>-1</sup> Pa <sup>-1</sup> ) | $m \text{ (mol kg}^{-1})$ | $\phi_{\rm V} \times 10^6 $ (m <sup>3</sup> mol <sup>-1</sup> ) | $(\eta_{\rm r} - 1)/\sqrt{m}$<br>(kg <sup>1/2</sup> mol <sup>-1/2</sup> ) | $\phi_{\rm K} \times 10^{11}$ (m <sup>3</sup> mol <sup>-1</sup> Pa <sup>-1</sup> ) |
|---------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| $w_1 = 0.005$             |                                                                 |                                                                           |                                                                                    |                           |                                                                 |                                                                           |                                                                                    |
| Glycine + aq.             | β-CD                                                            |                                                                           |                                                                                    |                           |                                                                 |                                                                           |                                                                                    |
| T=293.15~K                |                                                                 |                                                                           |                                                                                    | $T = 298.15 \ K$          |                                                                 |                                                                           |                                                                                    |
| 0.0100                    | 41.07                                                           | 0.015                                                                     | -2.73                                                                              | 0.0100                    | 42.12                                                           | 0.019                                                                     | -4.50                                                                              |
| 0.0200                    | 40.07                                                           | 0.022                                                                     | -14.06                                                                             | 0.0200                    | 41.67                                                           | 0.025                                                                     | -17.40                                                                             |
| 0.0300                    | 39.40                                                           | 0.025                                                                     | -24.76                                                                             | 0.0301                    | 41.32                                                           | 0.030                                                                     | -28.34                                                                             |
| 0.0401                    | 39.07                                                           | 0.030                                                                     | -32.42                                                                             | 0.0401                    | 41.05                                                           | 0.034                                                                     | -36.70                                                                             |
| 0.0501                    | 38.67                                                           | 0.033                                                                     | -39.56                                                                             | 0.0502                    | 40.80                                                           | 0.038                                                                     | -45.08                                                                             |
| 0.0601                    | 38.24                                                           | 0.036                                                                     | -45.55                                                                             | 0.0602                    | 40.57                                                           | 0.042                                                                     | -51.99                                                                             |
| T=303.15~K                |                                                                 |                                                                           |                                                                                    | $T = 308.15 \ K$          |                                                                 |                                                                           |                                                                                    |
| 0.0100                    | 43.18                                                           | 0.024                                                                     | -6.06                                                                              | 0.0100                    | 44.24                                                           | 0.029                                                                     | -8.33                                                                              |
| 0.0201                    | 42.83                                                           | 0.031                                                                     | -18.95                                                                             | 0.0201                    | 44.14                                                           | 0.038                                                                     | -23.38                                                                             |
| 0.0301                    | 42.61                                                           | 0.036                                                                     | -31.21                                                                             | 0.0302                    | 44.07                                                           | 0.044                                                                     | -35.57                                                                             |
| 0.0402                    | 42.43                                                           | 0.041                                                                     | -40.23                                                                             | 0.0402                    | 44.01                                                           | 0.049                                                                     | -45.22                                                                             |
| 0.0502                    | 42.26                                                           | 0.045                                                                     | -48.31                                                                             | 0.0503                    | 43.96                                                           | 0.054                                                                     | -54.97                                                                             |
| 0.0603                    | 42.09                                                           | 0.048                                                                     | -55.97                                                                             | 0.0604                    | 43.90                                                           | 0.059                                                                     | -63.08                                                                             |
| Alanine + aq.             | β-CD                                                            |                                                                           |                                                                                    |                           |                                                                 |                                                                           |                                                                                    |
| T=293.15~K                |                                                                 |                                                                           |                                                                                    | $T = 298.15 \ K$          |                                                                 |                                                                           |                                                                                    |
| 0.0100                    | 54.09                                                           | 0.025                                                                     | -13.14                                                                             | 0.0100                    | 55.16                                                           | 0.030                                                                     | -15.78                                                                             |
| 0.0200                    | 51.09                                                           | 0.035                                                                     | -31.81                                                                             | 0.0200                    | 52.66                                                           | 0.042                                                                     | -35.96                                                                             |
| 0.0300                    | 49.42                                                           | 0.043                                                                     | -46.80                                                                             | 0.0301                    | 50.82                                                           | 0.051                                                                     | -52.18                                                                             |
| 0.0401                    | 47.84                                                           | 0.049                                                                     | -59.66                                                                             | 0.0401                    | 49.48                                                           | 0.059                                                                     | -65.40                                                                             |
| 0.0501                    | 46.29                                                           | 0.056                                                                     | -70.90                                                                             | 0.0502                    | 48.15                                                           | 0.066                                                                     | -77.25                                                                             |
| 0.0602                    | 44.92                                                           | 0.062                                                                     | -81.60                                                                             | 0.0602                    | 46.98                                                           | 0.073                                                                     | -89.23                                                                             |
| T=303.15~K                |                                                                 |                                                                           |                                                                                    | $T = 308.15 \ K$          |                                                                 |                                                                           |                                                                                    |
| 0.0100                    | 56.23                                                           | 0.038                                                                     | -17.68                                                                             | 0.0100                    | 57.31                                                           | 0.042                                                                     | -19.17                                                                             |
| 0.0201                    | 54.23                                                           | 0.052                                                                     | -40.17                                                                             | 0.0201                    | 55.80                                                           | 0.057                                                                     | -42.48                                                                             |
| 0.0301                    | 52.56                                                           | 0.062                                                                     | -57.90                                                                             | 0.0302                    | 54.63                                                           | 0.069                                                                     | -59.11                                                                             |
| 0.0402                    | 51.22                                                           | 0.072                                                                     | -72.20                                                                             | 0.0402                    | 53.54                                                           | 0.079                                                                     | -74.16                                                                             |
| 0.0503                    | 50.22                                                           | 0.079                                                                     | -84.44                                                                             | 0.0503                    | 52.49                                                           | 0.087                                                                     | -87.25                                                                             |
| 0.0603                    | 49.21                                                           | 0.086                                                                     | -95.39                                                                             | 0.0604                    | 51.62                                                           | 0.095                                                                     | -99.97                                                                             |
| Valine + aq. [            | B-CD                                                            |                                                                           |                                                                                    |                           |                                                                 |                                                                           |                                                                                    |
| $T = 293.15 \ K$          |                                                                 |                                                                           |                                                                                    | $T = 298.15 \ K$          |                                                                 |                                                                           |                                                                                    |
| 0.0100                    | 80.15                                                           | 0.037                                                                     | -24.23                                                                             | 0.0100                    | 81.25                                                           | 0.043                                                                     | -25.90                                                                             |
| 0.0200                    | 75.65                                                           | 0.054                                                                     | -47.26                                                                             | 0.0201                    | 77.25                                                           | 0.059                                                                     | -49.98                                                                             |
| 0.0301                    | 72.48                                                           | 0.067                                                                     | -66.40                                                                             | 0.0301                    | 74.24                                                           | 0.074                                                                     | -70.60                                                                             |
| 0.0401                    | 70.15                                                           | 0.078                                                                     | -83.17                                                                             | 0.0402                    | 71.74                                                           | 0.085                                                                     | -86.72                                                                             |
| 0.0502                    | 67.55                                                           | 0.089                                                                     | -96.44                                                                             | 0.0502                    | 69.64                                                           | 0.096                                                                     | -101.87                                                                            |
| 0.0602                    | 65.32                                                           | 0.097                                                                     | -109.25                                                                            | 0.0603                    | 67.74                                                           | 0.108                                                                     | -114.53                                                                            |
| $T = 303.15 \ K$          |                                                                 |                                                                           |                                                                                    | $T = 308.15 \ K$          |                                                                 |                                                                           |                                                                                    |
| 0.0100                    | 82.36                                                           | 0.050                                                                     | -27.56                                                                             | 0.0100                    | 83.47                                                           | 0.055                                                                     | -28.87                                                                             |
| 0.0201                    | 78.85                                                           | 0.069                                                                     | -54.12                                                                             | 0.0201                    | 80.45                                                           | 0.075                                                                     | -57.80                                                                             |
| 0.0301                    | 76.01                                                           | 0.084                                                                     | -74.01                                                                             | 0.0302                    | 78.11                                                           | 0.092                                                                     | -78.75                                                                             |
| 0.0402                    | 73.59                                                           | 0.097                                                                     | -91.31                                                                             | 0.0403                    | 75.94                                                           | 0.104                                                                     | -97.06                                                                             |
| 0.0503                    | 71.53                                                           | 0.108                                                                     | -106.75                                                                            | 0.0504                    | 74.03                                                           | 0.117                                                                     | -112.68                                                                            |
| 0.0604                    | 69.83                                                           | 0.119                                                                     | -121.42                                                                            | 0.0605                    | 72.42                                                           | 0.129                                                                     | -126.38                                                                            |
| $w_1 = 0.0075$            |                                                                 |                                                                           |                                                                                    |                           |                                                                 |                                                                           |                                                                                    |



Table 3 continued

| m (mol kg <sup>-1</sup> )    | $\phi_{\rm V} \times 10^6 $ (m <sup>3</sup> mol <sup>-1</sup> ) | $(\eta_{\rm r} - 1)/\sqrt{m}$<br>(kg <sup>1/2</sup> mol <sup>-1/2</sup> ) | $\begin{array}{c} \phi_{\rm K} \times 10^{11} \\ ({\rm m^3~mol^{-1}~Pa^{-1}}) \end{array}$ | $m \text{ (mol kg}^{-1})$ | $\phi_{\rm V} \times 10^6 $ (m <sup>3</sup> mol <sup>-1</sup> ) | $(\eta_{\rm r} - 1)/\sqrt{m}$<br>(kg <sup>1/2</sup> mol <sup>-1/2</sup> ) | $\phi_{\rm K} \times 10^{11}$<br>(m <sup>3</sup> mol <sup>-1</sup> Pa <sup>-1</sup> ) |
|------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Glycine + aq.                | β-СD                                                            |                                                                           |                                                                                            |                           |                                                                 |                                                                           |                                                                                       |
| $T = 293.15 \ K$             |                                                                 |                                                                           |                                                                                            | $T = 298.15 \ K$          |                                                                 |                                                                           |                                                                                       |
| 0.0100                       | 41.02                                                           | 0.017                                                                     | -3.34                                                                                      | 0.0100                    | 42.08                                                           | 0.019                                                                     | -4.82                                                                                 |
| 0.0200                       | 40.32                                                           | 0.023                                                                     | -17.02                                                                                     | 0.0200                    | 41.58                                                           | 0.027                                                                     | -17.54                                                                                |
| 0.0300                       | 39.72                                                           | 0.028                                                                     | -26.45                                                                                     | 0.0300                    | 41.08                                                           | 0.032                                                                     | -28.43                                                                                |
| 0.0400                       | 39.15                                                           | 0.032                                                                     | -35.09                                                                                     | 0.0401                    | 40.82                                                           | 0.036                                                                     | -37.73                                                                                |
| 0.0500                       | 38.70                                                           | 0.035                                                                     | -42.18                                                                                     | 0.0501                    | 40.47                                                           | 0.039                                                                     | -45.54                                                                                |
| 0.0601                       | 38.26                                                           | 0.039                                                                     | -49.57                                                                                     | 0.0602                    | 40.24                                                           | 0.043                                                                     | -52.97                                                                                |
| $T = 303.15 \ K$             |                                                                 |                                                                           |                                                                                            | $T = 308.15 \ K$          |                                                                 |                                                                           |                                                                                       |
| 0.0100                       | 43.23                                                           | 0.021                                                                     | -5.52                                                                                      | 0.0100                    | 44.09                                                           | 0.025                                                                     | -6.35                                                                                 |
| 0.0200                       | 42.93                                                           | 0.029                                                                     | -20.36                                                                                     | 0.0201                    | 43.84                                                           | 0.034                                                                     | -20.41                                                                                |
| 0.0301                       | 42.66                                                           | 0.034                                                                     | -31.17                                                                                     | 0.0301                    | 43.62                                                           | 0.040                                                                     | -31.96                                                                                |
| 0.0401                       | 42.46                                                           | 0.038                                                                     | -40.99                                                                                     | 0.0402                    | 43.47                                                           | 0.046                                                                     | -41.76                                                                                |
| 0.0502                       | 42.23                                                           | 0.044                                                                     | -49.19                                                                                     | 0.0502                    | 43.33                                                           | 0.050                                                                     | -50.91                                                                                |
| 0.0602                       | 42.01                                                           | 0.047                                                                     | -56.66                                                                                     | 0.0603                    | 43.21                                                           | 0.055                                                                     | -58.56                                                                                |
| Alanine + aq.                | β-CD                                                            |                                                                           |                                                                                            |                           |                                                                 |                                                                           |                                                                                       |
| $T = 293.15 \ K$             |                                                                 |                                                                           |                                                                                            | T=298.15~K                |                                                                 |                                                                           |                                                                                       |
| 0.0100                       | 54.42                                                           | 0.027                                                                     | -18.56                                                                                     | 0.0100                    | 55.50                                                           | 0.030                                                                     | -19.00                                                                                |
| 0.0200                       | 52.03                                                           | 0.037                                                                     | -39.45                                                                                     | 0.0200                    | 53.60                                                           | 0.040                                                                     | -40.03                                                                                |
| 0.0300                       | 50.36                                                           | 0.046                                                                     | -55.76                                                                                     | 0.0301                    | 51.76                                                           | 0.050                                                                     | -56.79                                                                                |
| 0.0400                       | 48.78                                                           | 0.053                                                                     | -70.00                                                                                     | 0.0401                    | 50.35                                                           | 0.058                                                                     | -72.15                                                                                |
| 0.0501                       | 47.23                                                           | 0.059                                                                     | -82.51                                                                                     | 0.0501                    | 49.10                                                           | 0.066                                                                     | -84.90                                                                                |
| 0.0601                       | 45.87                                                           | 0.064                                                                     | -95.78                                                                                     | 0.0602                    | 47.93                                                           | 0.072                                                                     | -96.72                                                                                |
| $T = 303.15 \ K$             |                                                                 |                                                                           |                                                                                            | $T = 308.15 \ K$          |                                                                 |                                                                           |                                                                                       |
| 0.0100                       | 56.57                                                           | 0.032                                                                     | -20.54                                                                                     | 0.0100                    | 57.25                                                           | 0.035                                                                     | -21.12                                                                                |
| 0.0201                       | 54.67                                                           | 0.046                                                                     | -40.93                                                                                     | 0.0201                    | 55.24                                                           | 0.050                                                                     | -44.78                                                                                |
| 0.0301                       | 53.17                                                           | 0.057                                                                     | -60.48                                                                                     | 0.0301                    | 53.91                                                           | 0.061                                                                     | -62.33                                                                                |
| 0.0401                       | 51.92                                                           | 0.064                                                                     | -75.29                                                                                     | 0.0402                    | 52.74                                                           | 0.071                                                                     | -79.21                                                                                |
| 0.0502                       | 50.76                                                           | 0.074                                                                     | -88.23                                                                                     | 0.0503                    | 51.63                                                           | 0.081                                                                     | -92.47                                                                                |
| 0.0603                       | 49.66                                                           | 0.081                                                                     | -100.71                                                                                    | 0.0604                    | 50.56                                                           | 0.089                                                                     | -104.46                                                                               |
| Valine + aq. f               | 3-CD                                                            |                                                                           |                                                                                            |                           |                                                                 |                                                                           |                                                                                       |
| $T = 293.15 \ K$             |                                                                 |                                                                           |                                                                                            | T = 298.15 K              |                                                                 |                                                                           |                                                                                       |
| 0.0100                       | 80.05                                                           | 0.041                                                                     | -24.80                                                                                     | 0.0100                    | 81.16                                                           | 0.043                                                                     | -26.20                                                                                |
| 0.0200                       | 76.56                                                           | 0.057                                                                     | -47.71                                                                                     | 0.0200                    | 77.16                                                           | 0.059                                                                     | -49.80                                                                                |
| 0.0300                       | 73.06                                                           | 0.071                                                                     | -66.65                                                                                     | 0.0301                    | 74.16                                                           | 0.074                                                                     | -70.08                                                                                |
| 0.0401                       | 70.56                                                           | 0.082                                                                     | -84.27                                                                                     | 0.0401                    | 71.41                                                           | 0.087                                                                     | -86.73                                                                                |
| 0.0501                       | 67.67                                                           | 0.093                                                                     | -98.19                                                                                     | 0.0502                    | 69.16                                                           | 0.096                                                                     | -102.24                                                                               |
| 0.0602                       | 65.57                                                           | 0.102                                                                     | -110.51                                                                                    | 0.0602                    | 66.99                                                           | 0.109                                                                     | -115.35                                                                               |
| $T = 303.15 \ K$             |                                                                 |                                                                           |                                                                                            | $T = 308.15 \ K$          |                                                                 |                                                                           |                                                                                       |
| 0.0100                       | 82.27                                                           | 0.047                                                                     | -27.00                                                                                     | 0.0100                    | 83.38                                                           | 0.051                                                                     | -27.97                                                                                |
| 0.0201                       | 78.76                                                           | 0.067                                                                     | -53.50                                                                                     | 0.0201                    | 79.88                                                           | 0.073                                                                     | -55.12                                                                                |
| 0.0301                       | 75.59                                                           | 0.081                                                                     | -73.40                                                                                     | 0.0302                    | 77.36                                                           | 0.090                                                                     | -75.41                                                                                |
| 0.0402                       | 73.25                                                           | 0.094                                                                     | -90.68                                                                                     | 0.0402                    | 75.11                                                           | 0.103                                                                     | -92.64                                                                                |
| 0.0503                       | 71.05                                                           | 0.105                                                                     | -105.85                                                                                    | 0.0503                    | 73.15                                                           | 0.116                                                                     | -109.69                                                                               |
| 0.0603                       | 69.08                                                           | 0.116                                                                     | -120.99                                                                                    | 0.0604                    | 71.35                                                           | 0.126                                                                     | -123.74                                                                               |
| $w_1 = 0.0100$               | 0 CD                                                            |                                                                           |                                                                                            |                           |                                                                 |                                                                           |                                                                                       |
| Glycine + aq. $T = 202.15 V$ | p-CD                                                            |                                                                           |                                                                                            | T = 200 15 P              |                                                                 |                                                                           |                                                                                       |
| T = 293.15 K                 |                                                                 |                                                                           |                                                                                            | $T = 298.15 \ K$          |                                                                 |                                                                           |                                                                                       |



Table 3 continued

| m (mol kg <sup>-1</sup> ) | $\begin{array}{c} \phi_{\rm V} \times 10^6 \\ ({\rm m^3~mol}^{-1}) \end{array}$ | $(\eta_{\rm r} - 1)/\sqrt{m}$<br>$({\rm kg}^{1/2} \ {\rm mol}^{-1/2})$ | $\phi_{\rm K} \times 10^{11}$ (m <sup>3</sup> mol <sup>-1</sup> Pa <sup>-1</sup> ) | $m \text{ (mol kg}^{-1})$ | $\phi_{\rm V} \times 10^6 $ (m <sup>3</sup> mol <sup>-1</sup> ) | $(\eta_{\rm r} - 1)/\sqrt{m}$<br>(kg <sup>1/2</sup> mol <sup>-1/2</sup> ) | $\phi_{\rm K} \times 10^{11}$ (m <sup>3</sup> mol <sup>-1</sup> Pa <sup>-1</sup> ) |
|---------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 0.0100                    | 40.99                                                                           | 0.020                                                                  | -3.94                                                                              | 0.0100                    | 41.74                                                           | 0.022                                                                     | -6.51                                                                              |
| 0.0200                    | 39.99                                                                           | 0.027                                                                  | -17.30                                                                             | 0.0200                    | 41.04                                                           | 0.027                                                                     | -22.18                                                                             |
| 0.0300                    | 39.32                                                                           | 0.031                                                                  | -27.01                                                                             | 0.0300                    | 40.51                                                           | 0.033                                                                     | -33.56                                                                             |
| 0.0400                    | 38.74                                                                           | 0.034                                                                  | -36.35                                                                             | 0.0400                    | 39.94                                                           | 0.037                                                                     | -43.04                                                                             |
| 0.0500                    | 38.19                                                                           | 0.039                                                                  | -44.06                                                                             | 0.0501                    | 39.50                                                           | 0.042                                                                     | -51.84                                                                             |
| 0.0600                    | 37.66                                                                           | 0.042                                                                  | -51.27                                                                             | 0.0601                    | 39.04                                                           | 0.045                                                                     | -59.45                                                                             |
| $T = 303.15 \ K$          |                                                                                 |                                                                        |                                                                                    | $T = 308.15 \ K$          |                                                                 |                                                                           |                                                                                    |
| 0.0100                    | 42.49                                                                           | 0.024                                                                  | -6.83                                                                              | 0.0100                    | 42.95                                                           | 0.026                                                                     | -7.39                                                                              |
| 0.0200                    | 41.69                                                                           | 0.031                                                                  | -21.05                                                                             | 0.0201                    | 42.15                                                           | 0.034                                                                     | -24.62                                                                             |
| 0.0301                    | 41.09                                                                           | 0.036                                                                  | -33.15                                                                             | 0.0301                    | 41.48                                                           | 0.041                                                                     | -36.58                                                                             |
| 0.0401                    | 40.59                                                                           | 0.042                                                                  | -43.01                                                                             | 0.0401                    | 40.89                                                           | 0.047                                                                     | -47.18                                                                             |
| 0.0501                    | 40.09                                                                           | 0.045                                                                  | -51.42                                                                             | 0.0502                    | 40.34                                                           | 0.051                                                                     | -55.88                                                                             |
| 0.0602                    | 39.59                                                                           | 0.051                                                                  | -59.75                                                                             | 0.0603                    | 39.97                                                           | 0.056                                                                     | -64.06                                                                             |
| Alanine + aq.             | β-СD                                                                            |                                                                        |                                                                                    |                           |                                                                 |                                                                           |                                                                                    |
| T = 293.15 K              | •                                                                               |                                                                        |                                                                                    | T = 298.15 K              |                                                                 |                                                                           |                                                                                    |
| 0.0100                    | 53.98                                                                           | 0.029                                                                  | -23.06                                                                             | 0.0100                    | 55.05                                                           | 0.030                                                                     | -23.61                                                                             |
| 0.0200                    | 51.48                                                                           | 0.040                                                                  | -48.49                                                                             | 0.0200                    | 52.55                                                           | 0.042                                                                     | -50.33                                                                             |
| 0.0300                    | 49.32                                                                           | 0.048                                                                  | -67.37                                                                             | 0.0300                    | 50.72                                                           | 0.052                                                                     | -68.58                                                                             |
| 0.0400                    | 47.24                                                                           | 0.055                                                                  | -82.40                                                                             | 0.0400                    | 49.05                                                           | 0.060                                                                     | -84.45                                                                             |
| 0.0500                    | 45.80                                                                           | 0.061                                                                  | -96.85                                                                             | 0.0501                    | 47.65                                                           | 0.068                                                                     | -98.63                                                                             |
| 0.0600                    | 44.33                                                                           | 0.068                                                                  | -109.17                                                                            | 0.0601                    | 46.39                                                           | 0.075                                                                     | -111.90                                                                            |
| T = 303.15 K              |                                                                                 |                                                                        |                                                                                    | $T = 308.15 \ K$          |                                                                 |                                                                           |                                                                                    |
| 0.0100                    | 55.42                                                                           | 0.038                                                                  | -24.15                                                                             | 0.0100                    | 56.39                                                           | 0.042                                                                     | -24.91                                                                             |
| 0.0200                    | 53.12                                                                           | 0.052                                                                  | -48.33                                                                             | 0.0201                    | 54.19                                                           | 0.059                                                                     | -52.38                                                                             |
| 0.0301                    | 51.12                                                                           | 0.062                                                                  | -67.25                                                                             | 0.0301                    | 52.52                                                           | 0.071                                                                     | -72.48                                                                             |
| 0.0401                    | 49.37                                                                           | 0.072                                                                  | -83.65                                                                             | 0.0402                    | 50.93                                                           | 0.081                                                                     | -87.84                                                                             |
| 0.0501                    | 47.91                                                                           | 0.081                                                                  | -97.98                                                                             | 0.0502                    | 49.58                                                           | 0.090                                                                     | -103.23                                                                            |
| 0.0602                    | 46.45                                                                           | 0.089                                                                  | -111.90                                                                            | 0.0603                    | 48.34                                                           | 0.099                                                                     | -116.91                                                                            |
| Valine + aq.              |                                                                                 |                                                                        |                                                                                    |                           |                                                                 |                                                                           |                                                                                    |
| T = 293.15 K              | •                                                                               |                                                                        |                                                                                    | $T = 298.15 \ K$          |                                                                 |                                                                           |                                                                                    |
| 0.0100                    | 79.99                                                                           | 0.044                                                                  | -25.01                                                                             | 0.0100                    | 81.09                                                           | 0.048                                                                     | -26.06                                                                             |
| 0.0200                    | 75.49                                                                           | 0.061                                                                  | -49.06                                                                             | 0.0200                    | 77.09                                                           | 0.067                                                                     | -51.67                                                                             |
| 0.0300                    | 72.33                                                                           | 0.074                                                                  | -69.20                                                                             | 0.0300                    | 73.76                                                           | 0.080                                                                     | -71.80                                                                             |
| 0.0400                    | 69.26                                                                           | 0.087                                                                  | -85.45                                                                             | 0.0401                    | 71.09                                                           | 0.093                                                                     | -88.68                                                                             |
| 0.0501                    | 66.61                                                                           | 0.097                                                                  | -99.58                                                                             | 0.0501                    | 68.70                                                           | 0.103                                                                     | -103.38                                                                            |
| 0.0601                    | 64.35                                                                           | 0.106                                                                  | -113.36                                                                            | 0.0602                    | 66.43                                                           | 0.114                                                                     | -117.63                                                                            |
| T = 303.15 K              |                                                                                 |                                                                        |                                                                                    | $T = 308.15 \ K$          |                                                                 |                                                                           |                                                                                    |
| 0.0100                    | 81.69                                                                           | 0.050                                                                  | -27.10                                                                             | 0.0100                    | 82.30                                                           | 0.055                                                                     | -27.83                                                                             |
| 0.0200                    | 77.69                                                                           | 0.069                                                                  | -54.66                                                                             | 0.0201                    | 78.79                                                           | 0.075                                                                     | -53.93                                                                             |
| 0.0301                    | 74.52                                                                           | 0.084                                                                  | -75.71                                                                             | 0.0301                    | 75.62                                                           | 0.092                                                                     | -74.66                                                                             |
| 0.0401                    | 71.94                                                                           | 0.099                                                                  | -92.68                                                                             | 0.0402                    | 73.03                                                           | 0.108                                                                     | -93.96                                                                             |
| 0.0502                    | 69.39                                                                           | 0.111                                                                  | -108.29                                                                            | 0.0503                    | 70.68                                                           | 0.120                                                                     | -108.36                                                                            |
| 0.0603                    | 67.10                                                                           | 0.121                                                                  | -122.49                                                                            | 0.0604                    | 68.61                                                           | 0.132                                                                     | -123.35                                                                            |

observed that an overlap of cospheres of two ionic species causes an increase in volume, whereas an overlap of hydrophobic-hydrophobic groups and ion-hydrophobic groups results in a net decrease in volume. Thus, the observed positive  $\phi_V^0$  values (Table 4) are due to the effect of ion-hydrophilic interactions (between zwitterionic



**Table 4** Limiting apparent molal volumes  $(\phi_V^0)$ , experimental slopes  $(S_V^*)$ , viscosity A, B-coefficients, limiting partial molal adiabatic compressibilities  $(\phi_K^0)$ , and experimental slopes  $(S_K^*)$  of amino acids in different mass fraction of aqueous β-CD  $(w_1)$  at 293.15–308.15 K respectively

| Temp<br>/K      | $\phi_{\rm V}^0 \times 10^6 \ ({\rm m^3~mol^{-1}})$ | $S_{V}^{*} \times 10^{6}$ (m <sup>3</sup> mol <sup>-3/2</sup> kg <sup>1/2</sup> ) | $B (kg^{1/2} \text{ mol}^{-1/2})$ | $A (kg^{1/2} mol^{-1/2})$ | $\phi_{\rm K}^0 \times 10^{11}$ (m <sup>3</sup> mol <sup>-1</sup> Pa <sup>-1</sup> ) | $S_{\rm K}^* \times 10^{11}$<br>$({\rm m}^3 \ {\rm mol}^{-1} \ {\rm Pa}^{-1} \ {\rm kg}^{1/2})$ |
|-----------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|---------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| $w_1 = 0.0$     | 0050                                                |                                                                                   |                                   |                           |                                                                                      |                                                                                                 |
|                 | + aq. β-CD                                          |                                                                                   |                                   |                           |                                                                                      |                                                                                                 |
| 293.15          | $42.83 \pm 0.03$                                    | $-18.89 \pm 0.01$                                                                 | $0.143 \pm 0.009$                 | $0.0009 \pm 0.0003$       | $27.37 \pm 0.02$                                                                     | $-298.23 \pm 0.02$                                                                              |
| 298.15          | $43.18 \pm 0.02$                                    | $-10.65 \pm 0.03$                                                                 | $0.156 \pm 0.006$                 | $0.0032 \pm 0.0000$       | $28.66 \pm 0.03$                                                                     | $-328.18 \pm 0.01$                                                                              |
| 303.15          | $43.89 \pm 0.03$                                    | $-7.34 \pm 0.02$                                                                  | $0.172 \pm 0.008$                 | $0.0066 \pm 0.0000$       | $29.08 \pm 0.03$                                                                     | $-345.64 \pm 0.03$                                                                              |
| 308.15          | $44.46 \pm 0.02$                                    | $-2.27 \pm 0.02$                                                                  | $0.203 \pm 0.006$                 | $0.0089 \pm 0.0000$       | $29.77 \pm 0.02$                                                                     | $-376.68 \pm 0.03$                                                                              |
| Alanine         | + aq. β-CD                                          |                                                                                   |                                   |                           |                                                                                      |                                                                                                 |
| 293.15          | $60.13 \pm 0.01$                                    | $-61.91 \pm 0.02$                                                                 | $0.253 \pm 0.010$                 | $-0.0006 \pm 0.0001$      | $34.53 \pm 0.02$                                                                     | $-471.39 \pm 0.02$                                                                              |
| 298.15          | $60.64 \pm 0.02$                                    | $-55.86 \pm 0.01$                                                                 | $0.292 \pm 0.006$                 | $0.0004 \pm 0.0000$       | $34.98 \pm 0.02$                                                                     | $-502.96 \pm 0.03$                                                                              |
| 303.15          | $61.05 \pm 0.03$                                    | $-48.50 \pm 0.02$                                                                 | $0.328 \pm 0.004$                 | $0.0054 \pm 0.0000$       | $35.62 \pm 0.03$                                                                     | $-535.66 \pm 0.03$                                                                              |
| 308.15          | $61.33 \pm 0.03$                                    | $-39.19 \pm 0.03$                                                                 | $0.370 \pm 0.008$                 | $0.0045 \pm 0.0000$       | $36.16 \pm 0.03$                                                                     | $-551.45 \pm 0.02$                                                                              |
| Valine ⊣        | ⊢ aq. β-CD                                          |                                                                                   |                                   |                           |                                                                                      |                                                                                                 |
| 293.15          | $90.10 \pm 0.02$                                    | $-100.77 \pm 0.02$                                                                | $0.417 \pm 0.006$                 | $-0.0051 \pm 0.0001$      | $35.19 \pm 0.04$                                                                     | $-588.13 \pm 0.03$                                                                              |
| 298.15          | $90.46 \pm 0.03$                                    | $-92.94 \pm 0.03$                                                                 | $0.442 \pm 0.004$                 | $-0.0023 \pm 0.0000$      | $36.01 \pm 0.02$                                                                     | $-613.29 \pm 0.03$                                                                              |
| 303.15          | $91.08 \pm 0.01$                                    | $-86.84 \pm 0.02$                                                                 | $0.470 \pm 0.009$                 | $0.0028 \pm 0.0000$       | $37.00 \pm 0.03$                                                                     | $-641.92 \pm 0.03$                                                                              |
| 308.15          | $91.21 \pm 0.01$                                    | $-76.22 \pm 0.03$                                                                 | $0.506 \pm 0.008$                 | $0.0037 \pm 0.0000$       | $37.64 \pm 0.02$                                                                     | $-669.23 \pm 0.03$                                                                              |
| $w_1 = 0.0$     | 0075                                                |                                                                                   |                                   |                           |                                                                                      |                                                                                                 |
| Glycine         | $+ aq. \beta-CD$                                    |                                                                                   |                                   |                           |                                                                                      |                                                                                                 |
| 293.15          | $42.99 \pm 0.01$                                    | $-19.17 \pm 0.03$                                                                 | $0.147 \pm 0.006$                 | $0.0026 \pm 0.0000$       | $28.03 \pm 0.02$                                                                     | $-315.54 \pm 0.01$                                                                              |
| 298.15          | $43.35 \pm 0.02$                                    | $-12.74 \pm 0.01$                                                                 | $0.161 \pm 0.002$                 | $0.0035 \pm 0.0000$       | $29.05 \pm 0.02$                                                                     | $-333.25 \pm 0.02$                                                                              |
| 303.15          | $44.09 \pm 0.04$                                    | $-8.34 \pm 0.02$                                                                  | $0.181 \pm 0.001$                 | $0.0028 \pm 0.0000$       | $29.63 \pm 0.02$                                                                     | $-351.79 \pm 0.03$                                                                              |
| 308.15          | $44.70 \pm 0.02$                                    | $-6.13 \pm 0.02$                                                                  | $0.201 \pm 0.004$                 | $0.0054 \pm 0.0000$       | $30.32 \pm 0.02$                                                                     | $-360.95 \pm 0.02$                                                                              |
| Alanine         | $+ aq. \beta-CD$                                    |                                                                                   |                                   |                           |                                                                                      |                                                                                                 |
| 293.15          | $60.35 \pm 0.03$                                    | $-58.54 \pm 0.01$                                                                 | $0.259 \pm 0.009$                 | $0.0008\pm0.0000$         | $34.98 \pm 0.03$                                                                     | $-527.74 \pm 0.01$                                                                              |
| 298.15          | $60.88 \pm 0.03$                                    | $-52.59 \pm 0.02$                                                                 | $0.298 \pm 0.006$                 | $-0.0010 \pm 0.0000$      | $35.46 \pm 0.04$                                                                     | $-536.96 \pm 0.01$                                                                              |
| 303.15          | $61.36 \pm 0.02$                                    | $-47.37 \pm 0.03$                                                                 | $0.332 \pm 0.006$                 | $-0.0012 \pm 0.0000$      | $36.13 \pm 0.02$                                                                     | $-555.68 \pm 0.02$                                                                              |
| 308.15          | $61.76 \pm 0.02$                                    | $-45.32 \pm 0.02$                                                                 | $0.371 \pm 0.010$                 | $-0.0026\pm0.0000$        | $36.72 \pm 0.01$                                                                     | $-575.32 \pm 0.03$                                                                              |
| $Valine \dashv$ | ⊢ aq. β-CD                                          |                                                                                   |                                   |                           |                                                                                      |                                                                                                 |
| 293.15          | $90.49 \pm 0.03$                                    | $-100.99 \pm 0.04$                                                                | $0.420 \pm 0.004$                 | $-0.0014 \pm 0.0000$      | $35.70 \pm 0.01$                                                                     | $-596.16 \pm 0.02$                                                                              |
| 298.15          | $90.94 \pm 0.03$                                    | $-97.37 \pm 0.03$                                                                 | $0.449 \pm 0.011$                 | $-0.0033 \pm 0.0000$      | $36.57 \pm 0.02$                                                                     | $-617.49 \pm 0.03$                                                                              |
| 303.15          | $91.49 \pm 0.02$                                    | $-91.12 \pm 0.03$                                                                 | $0.472 \pm 0.004$                 | $-0.0003 \pm 0.0000$      | $37.58 \pm 0.03$                                                                     | $-642.03 \pm 0.03$                                                                              |
| 308.15          | $91.61 \pm 0.02$                                    | $-82.33 \pm 0.01$                                                                 | $0.513 \pm 0.009$                 | $0.0001 \pm 0.0000$       | $38.17 \pm 0.03$                                                                     | $-656.92 \pm 0.02$                                                                              |
| $w_1 = 0.0$     | 0100                                                |                                                                                   |                                   |                           |                                                                                      |                                                                                                 |
| Glycine         | $+ aq. \beta-CD$                                    |                                                                                   |                                   |                           |                                                                                      |                                                                                                 |
| 293.15          | $43.23 \pm 0.01$                                    | $-22.62 \pm 0.00$                                                                 | $0.149 \pm 0.011$                 | $0.0049 \pm 0.0000$       | $28.88 \pm 0.04$                                                                     | $-326.19 \pm 0.02$                                                                              |
| 298.15          | $43.65 \pm 0.02$                                    | $-18.57 \pm 0.03$                                                                 | $0.165 \pm 0.010$                 | $0.0045 \pm 0.0000$       | $29.57 \pm 0.03$                                                                     | $-363.63 \pm 0.01$                                                                              |
| 303.15          | $44.49 \pm 0.01$                                    | $-19.73 \pm 0.02$                                                                 | $0.186 \pm 0.006$                 | $0.0047 \pm 0.0000$       | $30.09 \pm 0.02$                                                                     | $-364.95 \pm 0.02$                                                                              |
| 308.15          | $45.06 \pm 0.02$                                    | $-20.81 \pm 0.03$                                                                 | $0.206 \pm 0.006$                 | $0.0050\pm0.0000$         | $30.92 \pm 0.01$                                                                     | $-388.23 \pm 0.01$                                                                              |
| Alanine         | $+ aq. \beta-CD$                                    |                                                                                   |                                   |                           |                                                                                      |                                                                                                 |
| 293.15          | $60.84 \pm 0.02$                                    | $-67.28 \pm 0.02$                                                                 | $0.261 \pm 0.009$                 | $0.0030 \pm 0.0000$       | $35.62 \pm 0.03$                                                                     | $-591.88 \pm 0.03$                                                                              |
| 298.15          | $61.01 \pm 0.01$                                    | $-59.65 \pm 0.03$                                                                 | $0.310 \pm 0.009$                 | $-0.0016 \pm 0.0000$      | $35.99 \pm 0.02$                                                                     | $-602.90 \pm 0.03$                                                                              |
| 303.15          | $61.76 \pm 0.01$                                    | $-61.95 \pm 0.01$                                                                 | $0.346 \pm 0.006$                 | $0.0030 \pm 0.0000$       | $36.70 \pm 0.02$                                                                     | $-602.56 \pm 0.02$                                                                              |
| 308.15          | $62.02 \pm 0.03$                                    | $-55.43 \pm 0.02$                                                                 | $0.389 \pm 0.010$                 | $0.0031 \pm 0.0000$       | $37.26 \pm 0.03$                                                                     | $-627.84 \pm 0.03$                                                                              |
| Valine -        | ⊢ aq. β-CD                                          |                                                                                   |                                   |                           |                                                                                      |                                                                                                 |
| 293.15          | $90.80 \pm 0.02$                                    | $-107.75 \pm 0.03$                                                                | $0.434 \pm 0.009$                 | $-0.0003 \pm 0.0000$      | $36.34 \pm 0.03$                                                                     | $-608.79 \pm 0.03$                                                                              |
| 298.15          | $91.26 \pm 0.02$                                    | $-100.91 \pm 0.01$                                                                | $0.451 \pm 0.010$                 | $0.0027 \pm 0.0000$       | $37.09 \pm 0.01$                                                                     | $-628.78 \pm 0.01$                                                                              |
| 303.15          | $91.81 \pm 0.03$                                    | $-100.05 \pm 0.02$                                                                | $0.494 \pm 0.006$                 | $-0.0002\pm0.0000$        | $38.13 \pm 0.03$                                                                     | $-654.09 \pm 0.04$                                                                              |
| 308.15          | $92.00 \pm 0.03$                                    | $-94.88 \pm 0.02$                                                                 | $0.535 \pm 0.009$                 | $0.0001 \pm 0.0000$       | $38.68 \pm 0.03$                                                                     | $-657.81 \pm 0.01$                                                                              |



centres of the amino acids and the –OH groups of  $\beta\text{-CD})$  which predominate over ion–hydrophobic interactions (between zwitterionic centres and non-polar parts of  $\beta\text{-CD})$  and hydrophobic–hydrophobic interactions (between non-polar parts of the amino acids and  $\beta\text{-CD})$  and increase in the order

glycine < L-alanine < L-valine

at each investigated temperature. The increase  $\phi_V^0$  with increasing temperature may be attributed to the release of some solvation molecules from the loose solvation layers of the solutes in solution. A plausible mechanism of interaction between  $\beta$ -CD and different amino acids as evident from the experimental observation is given in Scheme 2.

The values of  $\phi_V^0$  and  $S_V^*$  for the amino acids in pure water are adopted from the literature (Millero et al. 1978; Xu et al. 2006). The parameter  $S_{V}^{*}$  is the volumetric virial coefficient, and it characterizes the pair-wise interaction of solute species in solution (Wadi and Ramasami 1997; Banipal et al. 2004).  $S_V^*$  is found to be negative under investigations, which suggest that the pair-wise interaction is restricted by the interaction of the charged functional group one molecule to side chain of the other amino acid molecules. From Table 4, a quantitative comparison between  $\phi_{\rm V}^0$  and  $S_{\rm V}^*$  values show that the magnitude of  $\phi_{\rm V}^0$ values is higher than  $S_{V}^{*}$ , suggesting that the solute–solvent interactions dominate over the solute-solute interactions in all solutions at the investigated temperatures. Furthermore,  $S_{V}^{*}$  values are negative at all temperatures, and the values slightly increase with the increase of experimental temperatures which may be attributed to more violent thermal agitation at higher temperatures, resulting in diminishing the force of solute-solute interactions.

Contributions of the zwitterionic end group,  $CH_2$  groups, and other alkyl chains of the amino acids to  $\phi_V^0$ 

The  $\phi_V^0$  value for the homologous series varies linearly with the number of carbon atoms in the alkyl chain (R) of the amino acids. Similar correlations have been reported earlier by a number of Workers (Millero et al. 1978; Xu et al. 2006) and this linear variation can be represented as follows:

$$\phi_{V}^{0} = \phi_{V}^{0}(NH_{3}^{+}, COO^{-}) + n_{c}\phi_{V}^{0}(CH_{2})$$
(4)

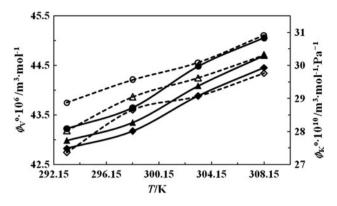
where  $n_c$  is the number of carbon atoms in the alkyl chain of the amino acid,  $\phi_V^0(NH_3^+,COO^-)$  and  $\phi_V^0(CH_2)$  are the zwitterionic end group and methylene group contribution to  $\phi_V^0$ , respectively. The values of  $\phi_V^0(NH_3^+,COO^-)$  and  $\phi_V^0(CH_2)$ , calculated by a least-square regression analysis, are listed in Table 5, where those values in pure water are

also provided from the literature (Banerjee and Kishore 2005) It is well described in the literature (Banerjee and Kishore 2005) that  $\phi_V^0(\text{CH}_2)$  obtained by this scheme characterizes the mean contribution of the  $\phi_V^0$  (CH) and  $\phi_V^0$  (CH<sub>3</sub>) values of the amino acids.

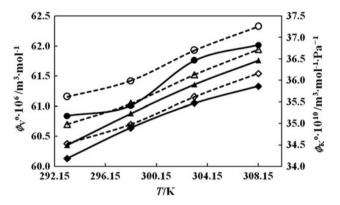
$$\phi_{V}^{0}(CH) = 0.5 \,\phi_{V}^{0}(CH_{2}) \tag{5}$$

$$\phi_{V}^{0}(CH_{3}) = 1.5 \,\phi_{V}^{0}(CH_{2}) \tag{6}$$

and are listed in Table 5. The table shows that the contribution of  $(NH_3^+, COO^-)$  to  $\phi_V^0$  is larger than that of the  $CH_2^-$  group and increases with the increase in the mass fraction  $(w_1)$  of the cosolute  $\beta$ -CD, and investigated temperatures, which indicates that the interactions between the cosolute and charged end groups  $(NH_3^+, COO^-)$  of amino acids are much stronger than those between the cosolute and  $CH_2^-$  group. Similar results were also reported (Wang et al. 2004) for some  $\alpha$ -amino acids in aqueous sodium caprylate solutions.


Standard transfer volume

The standard transfer volume for the homologous series of amino acid,  $\Delta\phi_{\rm V}^0$ , from pure water to aqueous  $\beta$ -CD solutions is defined by


$$\Delta\phi_{\rm V}^0({\rm amino~acid}) = \phi_{\rm V}^0({\rm amino~acis} + {\rm aqueous~}\beta - {\rm CD}) \\ - \phi_{\rm V}^0({\rm water}) \eqno(7)$$

The results are illustrated in Table 6 and Figure as a function of molarity of aqueous β-CD solutions. The value of  $\Delta \phi_{\rm V}^0$  is, by definition, free from solute-solute interactions and therefore provides information regarding solute-solvent interactions (Belibagli and Agranci 1990). This agreement among the amino acids can be explained by the co-sphere model, as developed by Friedman and Krishnan (1973) according to which the effect of overlap of the hydration co-spheres is constructive. The overlap of hydration co-spheres of two ionic species results in an increase in volume, but that of hydration co-spheres of hydrophobic-hydrophobic groups and ion-hydrophobic groups results in a net volume decrease. Since amino acids exist predominantly as zwitterions in pure water and there is an overall decrease in volume of water due to electrostriction, the observed increasing positive volumes of transfer indicate that in the ternary solutions (amino acid +aq.  $\beta$ -CD), the salts have the ion-hydrophilic and hydrophilic-hydrophilic group interactions predominate over the ion-hydrophobic and hydrophobic-hydrophobic groups interactions, and the contribution increases with the molarity of  $\beta$ -CD in solutions. However, the negative  $\Delta \phi_{V}^{0}$ values for L-valine indicate that ion-hydrophobic and





**Fig. 1** Plot of limiting apparent molar volume  $(\phi_V^0)$  for glycine (filled diamond), alanine (filled triangle), valine (filled circle), and limiting molar isentropic compressibility  $(\phi_K^0)$  for glycine (open diamond), alanine (open triangle), valine (open circle), against studied temp (T) in  $w_1 = 0.005$  mass fraction of aq. β-CD



**Fig. 2** Plot of limiting apparent molar volume  $(\phi_V^0)$  for glycine (filled diamond), alanine (filled triangle), valine (filled circle), and limiting molar isentropic compressibility  $(\phi_K^0)$  for glycine (open diamond), alanine (open triangle), valine (open circle), against studied temp (T) in  $w_1 = 0.0075$  mass fraction of aq. β-CD

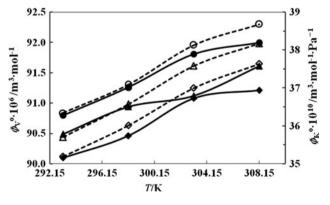
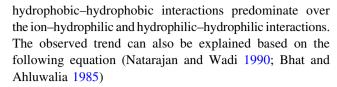




Fig. 3 Plot of limiting apparent molar volume  $(\phi_V^0)$  for glycine (filled diamond), alanine (filled triangle), valine (filled circle), and limiting molar isentropic compressibility  $(\phi_K^0)$  for glycine (open diamond), alanine (open triangle), valine (open circle), against studied temp (T) in  $w_1 = 0.01$  mass fraction of aq. β-CD



$$\phi_{\mathbf{V}}^{0} = \phi_{\mathbf{V}\mathbf{W}} + \phi_{\mathbf{V}} - \phi_{\mathbf{S}} \tag{8}$$

where  $\phi_{\rm VW}$  is the van der Waals volume,  $\phi_{\rm V}$  is the volume associated with voids or empty space, and  $\phi_S$  is the shrinkage volume due to electrostriction. Assuming the  $\phi_{VW}$  and  $\phi_{V}$  have the same magnitudes in water and in aqueous β-CD solutions for the same class of solutes (Mishra and Ahluwalia 1981), the observed positive  $\Delta \phi_{\rm v}^0$ values ascribed to the decrease in the volume of shrinkage, whereas negative  $\Delta \phi_{\rm V}^0$  values for L-valine may be attributed to shrinkage in volume. Banipal et al. (2001) also reported a decrease in the  $\Delta \phi_{\rm V}^0$  value with increasing size of the non-polar side chain of amino acids in aqueous glycerol. The introduction of a CH<sub>3</sub>- group in L-alanine provides an additional tendency for hydrophobic-hydrophilic and hydrophobic-hydrophobic group interactions, and as a result, greater electrostriction of water is produced leading to smaller changes of  $\Delta \phi_{\rm V}^0$ . Similarly, when the H-atom of glycine is replaced by the (CH<sub>3</sub>CH<sub>2</sub>CH<sub>-</sub>) group in L-valine, the additional propensity for hydrophobichydrophilic group interactions increases further and thus leads to change in  $\Delta \phi_{\rm V}^0$  values. This is in good agreement with the conclusion drawn by Li et al. (2001) in a study of glycine, L-alanine and L-serine in glycerol-water mixture at 298.15 K.

The standard partial molar volumes of transfer of the zwitterionic end group,  $\Delta\phi_V^0(NH_3^+,COO^-)$ , and other alkyl chain groups,  $\Delta\phi_V^0(R)$ , of amino acids from water to cosolute solutions have been calculated as follows

$$\begin{split} \Delta\phi_{\mathrm{V}}^{0}(\mathrm{NH_{3}^{+},COO^{-}}) &= \phi_{\mathrm{V}}^{0}(\mathrm{NH_{3}^{+},COO^{-}}) \, [\mathrm{in \ aqueous \ cosolute}] \\ &- \phi_{\mathrm{V}}^{0}(\mathrm{NH_{3}^{+},COO^{-}}) \, [\mathrm{in \ water}] \end{split} \tag{9}$$

and are included in Table 7 and illustrated in Fig. 4. The contribution of (NH $_3^+$ , COO $^-$ ) to  $\Delta\phi_V^0$  is positive throughout the studied concentration range of the aq. cosolute and increases with the increase in experimental temperature. The contribution of the alkyl chain groups to  $\Delta\phi_V^0$  is negative for all the amino acids, and shows the contribution of CH $_-$ , CH $_2^-$ , CH $_3^-$ , is negligible compare to the water.

The contribution of the other alkyl chain groups of the amino acids has been calculated from the difference between the limiting apparent molar volumes  $(\phi_V^0)$  values of each amino acid and that of glycine using the following scheme



Scheme 2 Plausible mechanism of interaction of glycine, L-alanine, L-valine with β-CD

Table 5 Contributions of zwitter ionic group (NH<sub>3</sub><sup>+</sup>, COO<sup>-</sup>), CH<sub>2</sub> group, and the other alkyl chains to the limiting apparent molar volume,  $\phi_V^0$ , for amino acids in different mass fraction of aqueous β-CD ( $w_1$ ) at 293.15–308.15 K respectively

|                                           | $\phi_{ m V}^0 	imes 10^6$ | $(m^3 \text{ mol}^{-1})$ |        |        |                                           |        |        |        |        |
|-------------------------------------------|----------------------------|--------------------------|--------|--------|-------------------------------------------|--------|--------|--------|--------|
| Temp (K):                                 | 293.15                     | 298.15                   | 303.15 | 308.15 |                                           | 293.15 | 298.15 | 303.15 | 308.15 |
| $w_1 = 0.0000$                            |                            |                          |        |        | $w_1 = 0.005$                             |        |        |        |        |
| $\mathrm{NH_3}^+,\mathrm{COO}^-$          | 27.71                      | 27.98                    | 28.26  | 28.45  | $\mathrm{NH_3}^+,\mathrm{COO}^-$          | 27.88  | 28.30  | 28.90  | 29.55  |
| (CH)                                      | 7.60                       | 7.61                     | 7.62   | 7.62   | (CH)                                      | 7.48   | 7.44   | 7.50   | 7.46   |
| Gly (CH <sub>2</sub> )                    | 15.20                      | 15.22                    | 15.23  | 15.24  | Gly (CH <sub>2</sub> )                    | 14.95  | 14.88  | 14.99  | 14.91  |
| (CH <sub>3</sub> )                        | 22.80                      | 22.83                    | 22.85  | 22.86  | (CH <sub>3</sub> )                        | 22.43  | 22.32  | 22.49  | 22.37  |
| Ala (CH <sub>3</sub> CH-)                 | 32.53                      | 32.51                    | 32.49  | 32.56  | Ala (CH <sub>3</sub> CH-)                 | 32.25  | 32.34  | 32.15  | 31.78  |
| Val (CH <sub>3</sub> CH <sub>2</sub> CH-) | 62.98                      | 63.00                    | 63.00  | 63.10  | Val (CH <sub>3</sub> CH <sub>2</sub> CH-) | 62.22  | 62.16  | 62.18  | 61.66  |
| $w_I = 0.0075$                            |                            |                          |        |        | $w_I = 0.01$                              |        |        |        |        |
| $\mathrm{NH_3}^+, \mathrm{COO}^-$         | 27.95                      | 28.35                    | 29.24  | 29.80  | $\mathrm{NH_3}^+, \mathrm{COO}^-$         | 28.29  | 28.56  | 29.50  | 30.10  |
| (CH)                                      | 7.52                       | 7.50                     | 7.43   | 7.45   | (CH)                                      | 7.47   | 7.55   | 7.50   | 7.48   |
| Gly (CH <sub>2</sub> )                    | 15.04                      | 15.00                    | 14.85  | 14.90  | Gly (CH <sub>2</sub> )                    | 14.94  | 15.09  | 14.99  | 14.96  |
| (CH <sub>3</sub> )                        | 22.56                      | 22.50                    | 22.28  | 22.35  | (CH <sub>3</sub> )                        | 22.41  | 22.64  | 22.49  | 22.44  |
| Ala (CH <sub>3</sub> CH-)                 | 32.40                      | 32.53                    | 32.12  | 31.96  | Ala (CH <sub>3</sub> CH-)                 | 32.55  | 32.45  | 32.26  | 31.92  |
| Val (CH <sub>3</sub> CH <sub>2</sub> CH–) | 62.54                      | 62.59                    | 61.88  | 61.81  | Val (CH <sub>3</sub> CH <sub>2</sub> CH–) | 62.51  | 62.70  | 62.31  | 61.90  |

$$\Delta\phi_{\rm V}^0(R) = \phi_{\rm V}^0({\rm amino~acid}) - \phi_{\rm V}^0({\rm glycine}) \tag{10}$$

where  $\Delta\phi_{\rm V}^0(R)$  defines the side chain transfer contribution to  $\phi_{\rm V}^0$  of the respective amino acid relative to the H-atom of glycine. In this scheme, it is assumed that the volume contribution of the H-atom in glycine is negligible. The results are listed in Table 7. The table shows that the  $\Delta\phi_{\rm V}^0(R)$  values for L-alanine (CH<sub>3</sub>CH–) and L-valine (CH<sub>3</sub>CH<sub>2</sub>CH–) are positive, which suggests that the contribution of alkyl chain is greater than relative to the H-atom of glycine in solute–solvent interaction in solution.

Hydration number estimated from apparent molar volume

The number of water molecules  $(n_{\rm H})$  hydrated to the amino acids can be estimated from the value of measured standard

partial molar volume. The values of  $\phi_{V}^{0}$  of the studied amino acids can be expressed as (Millero et al. 1978)

$$\phi_{\mathbf{V}}^{0}(\text{amino acid}) = \phi_{\mathbf{V}}^{0}(\text{int}) + \phi_{\mathbf{V}}^{0}(\text{elect})$$
 (11)

where  $\phi_V^0(\text{int})$  is the intrinsic partial molar volumes of the amino acids and  $\phi_V^0(\text{elect})$  is the electrostriction partial molar volume as a result of hydration of the amino acids. The  $\phi_V^0(\text{int})$  consists of two terms: the van der Waals volume and the volume due to packing effects. The values of  $\phi_V^0(\text{int})$  for the amino acids were calculated from their crystal molar volume (Millero et al. 1978) using the following relationship,

$$\phi_{V}^{0}(\text{int}) = (0.7/0.634)\phi_{V}^{0}(\text{cryst}) \tag{12}$$

where, 0.7 is the packing density in an organic crystal and 0.634 is the packing density of randomly packed spheres.



**Table 6** Values of  $\phi_V^0$  (aqueous),  $\Delta\phi_V^0$ ,  $\phi_V^0$  (elect),  $\phi_K^0$  (elect), and hydration number ( $n_H$ ) for amino acids in different mass fraction of aqueous β-CD ( $w_1$ ) at 293.15–308.15 K respectively

| Temp                    | $\phi_{\rm V}^0 \times 10^6 ({\rm aqueous})$<br>(m <sup>3</sup> mol <sup>-1</sup> ) | $\Delta \phi_{\rm V}^0 \times 10^6 \ ({ m m}^3  { m mol}^{-1})$ | $\phi_{\rm V}^0 \times 10^6 ({\rm elect})$<br>(m <sup>3</sup> mol <sup>-1</sup> ) | $\phi_{\rm K}^0 \times 10^{10} ({\rm elect}) \ ({\rm m}^3 \ {\rm mol}^{-1} \ {\rm Pa}^{-1})$ | $n_{ m H}$  |                      |
|-------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------|----------------------|
| (K)                     | $(m^3 \text{ mol}^{-1})$                                                            | (m <sup>3</sup> mol <sup>-1</sup> )                             | (m³ mol <sup>-1</sup> )                                                           | $(m^3 \text{ mol}^{-1} \text{ Pa}^{-1})$                                                     | From volume | From compressibility |
| $w_1 = 0.005$           |                                                                                     |                                                                 |                                                                                   |                                                                                              |             |                      |
| Glycine                 |                                                                                     |                                                                 |                                                                                   |                                                                                              |             |                      |
| 293.15                  | 42.91                                                                               | -0.08                                                           | 9.02                                                                              | 24.67                                                                                        | 3.01        | 3.07                 |
| 298.15                  | 43.20                                                                               | -0.02                                                           | 8.67                                                                              | 25.96                                                                                        | 2.89        | 3.23                 |
| 303.15                  | 43.49                                                                               | 0.40                                                            | 7.96                                                                              | 26.38                                                                                        | 2.65        | 3.28                 |
| 308.15                  | 43.69                                                                               | 0.77                                                            | 7.39                                                                              | 27.07                                                                                        | 2.46        | 3.36                 |
| Alanine                 |                                                                                     |                                                                 |                                                                                   |                                                                                              |             |                      |
| 293.15                  | 60.24                                                                               | -0.11                                                           | 11.62                                                                             | 31.83                                                                                        | 3.87        | 3.95                 |
| 298.15                  | 60.49                                                                               | 0.15                                                            | 11.10                                                                             | 32.28                                                                                        | 3.70        | 4.01                 |
| 303.15                  | 60.75                                                                               | 0.30                                                            | 10.69                                                                             | 32.92                                                                                        | 3.56        | 4.09                 |
| 308.15                  | 61.01                                                                               | 0.32                                                            | 10.42                                                                             | 33.46                                                                                        | 3.47        | 4.16                 |
| Valine                  |                                                                                     |                                                                 |                                                                                   |                                                                                              |             |                      |
| 293.15                  | 90.69                                                                               | -0.59                                                           | 11.99                                                                             | 32.49                                                                                        | 4.00        | 4.04                 |
| 298.15                  | 90.98                                                                               | -0.52                                                           | 11.63                                                                             | 33.31                                                                                        | 3.88        | 4.14                 |
| 303.15                  | 91.26                                                                               | -0.18                                                           | 11.01                                                                             | 34.30                                                                                        | 3.67        | 4.26                 |
| 308.15                  | 91.55                                                                               | -0.34                                                           | 10.88                                                                             | 34.94                                                                                        | 3.63        | 4.34                 |
| $w_1 = 0.0075$          |                                                                                     |                                                                 |                                                                                   |                                                                                              |             |                      |
| Glycine                 |                                                                                     |                                                                 |                                                                                   |                                                                                              |             |                      |
| 293.15                  | 42.91                                                                               | 0.08                                                            | 8.86                                                                              | 25.33                                                                                        | 2.95        | 3.15                 |
| 298.15                  | 43.20                                                                               | 0.15                                                            | 8.50                                                                              | 26.35                                                                                        | 2.83        | 3.27                 |
| 303.15                  | 43.49                                                                               | 0.60                                                            | 7.76                                                                              | 26.93                                                                                        | 2.59        | 3.35                 |
| 308.15                  | 43.69                                                                               | 0.91                                                            | 7.15                                                                              | 27.62                                                                                        | 2.38        | 3.43                 |
| Alanine                 |                                                                                     |                                                                 |                                                                                   |                                                                                              |             |                      |
| 293.15                  | 60.24                                                                               | 0.11                                                            | 11.40                                                                             | 32.28                                                                                        | 3.80        | 4.01                 |
| 298.15                  | 60.49                                                                               | 0.39                                                            | 10.87                                                                             | 32.76                                                                                        | 3.62        | 4.07                 |
| 303.15                  | 60.75                                                                               | 0.61                                                            | 10.39                                                                             | 33.43                                                                                        | 3.46        | 4.15                 |
| 308.15                  | 61.01                                                                               | 0.75                                                            | 9.99                                                                              | 34.02                                                                                        | 3.33        | 4.23                 |
| Valine                  | 01.01                                                                               | 0.75                                                            | 7.77                                                                              | 31.02                                                                                        | 3.33        | 1.23                 |
| 293.15                  | 90.69                                                                               | -0.20                                                           | 11.60                                                                             | 33.00                                                                                        | 3.87        | 4.10                 |
| 298.15                  | 90.98                                                                               | -0.04                                                           | 11.15                                                                             | 33.87                                                                                        | 3.72        | 4.21                 |
| 303.15                  | 91.26                                                                               | -0.04                                                           | 10.97                                                                             | 34.88                                                                                        | 3.66        | 4.33                 |
| 308.15                  | 91.55                                                                               | 0.06                                                            | 10.48                                                                             | 35.47                                                                                        | 3.49        | 4.41                 |
| $w_1 = 0.01$            | 71.55                                                                               | 0.00                                                            | 10.40                                                                             | 33.47                                                                                        | 5.47        | 7.71                 |
| $W_1 = 0.01$<br>Glycine |                                                                                     |                                                                 |                                                                                   |                                                                                              |             |                      |
| 293.15                  | 42.91                                                                               | 0.32                                                            | 8.62                                                                              | 26.18                                                                                        | 2.87        | 3.25                 |
| 298.15                  | 43.20                                                                               | 0.45                                                            | 8.20                                                                              | 26.87                                                                                        | 2.73        | 3.34                 |
| 303.15                  | 43.49                                                                               | 1.00                                                            | 7.36                                                                              | 27.39                                                                                        | 2.45        | 3.40                 |
| 308.15                  | 43.69                                                                               | 1.27                                                            | 6.79                                                                              | 28.22                                                                                        | 2.45        | 3.51                 |
| Alanine                 | 73.07                                                                               | 1.2/                                                            | 0.77                                                                              | 20.22                                                                                        | 2.20        | 5.51                 |
| 293.15                  | 60.24                                                                               | 0.60                                                            | 10.91                                                                             | 32.92                                                                                        | 3.64        | 4.09                 |
| 293.13<br>298.15        | 60.49                                                                               | 0.52                                                            | 10.74                                                                             | 33.29                                                                                        | 3.58        | 4.09                 |
| 298.15<br>303.15        | 60.75                                                                               | 1.01                                                            | 9.99                                                                              | 34.00                                                                                        | 3.38        | 4.14                 |
|                         |                                                                                     |                                                                 |                                                                                   |                                                                                              |             |                      |
| 308.15                  | 61.01                                                                               | 1.01                                                            | 9.73                                                                              | 34.56                                                                                        | 3.24        | 4.29                 |
| Valine                  | 00.60                                                                               | 0.11                                                            | 11.20                                                                             | 22.64                                                                                        | 2.76        | A 10                 |
| 293.15                  | 90.69                                                                               | 0.11                                                            | 11.29                                                                             | 33.64                                                                                        | 3.76        | 4.18                 |
| 298.15                  | 90.98                                                                               | 0.28                                                            | 10.83                                                                             | 34.39                                                                                        | 3.61        | 4.27                 |
| 303.15                  | 91.26                                                                               | 0.55                                                            | 10.28                                                                             | 35.43                                                                                        | 3.43        | 4.40                 |
| 308.15                  | 91.55                                                                               | 0.45                                                            | 10.09                                                                             | 35.98                                                                                        | 3.36        | 4.47                 |



**Table 7** Contributions of zwitter ionic group (NH<sub>3</sub><sup>+</sup>, COO<sup>-</sup>), CH<sub>2</sub> group, and the other alkyl chains to the limiting apparent molar volume transfer  $\Delta \phi_{\rm V}^0$ , in different mass fraction of aqueous  $\beta$ -CD ( $w_1$ ) at 293.15–308.15 K respectively

| $\Delta\phi_{\rm V}^0\times10^6~({\rm m^3~mol^{-1}})$ | 1      |        |        |        | $\Delta\phi_{ m V}^0(R)$ × | 10 <sup>6</sup> (m <sup>3</sup> mol <sup>-1</sup> | )      |        |
|-------------------------------------------------------|--------|--------|--------|--------|----------------------------|---------------------------------------------------|--------|--------|
| Temp (K):                                             | 293.15 | 298.15 | 303.15 | 308.15 | 293.15                     | 298.15                                            | 303.15 | 308.15 |
| $w_I = 0.005$                                         |        |        |        |        |                            |                                                   |        |        |
| $\mathrm{NH_3}^+,\mathrm{COO}^-$                      | 0.17   | 0.32   | 0.64   | 1.10   | _                          | -                                                 | -      | _      |
| (CH)                                                  | -0.12  | -0.17  | -0.12  | -0.16  | _                          | _                                                 | _      | _      |
| Gly (CH <sub>2</sub> )                                | -0.25  | -0.34  | -0.24  | -0.33  | _                          | _                                                 | _      | _      |
| (CH <sub>3</sub> )                                    | -0.37  | -0.51  | -0.36  | -0.49  | _                          | _                                                 | _      | _      |
| Ala (CH <sub>3</sub> CH-)                             | -0.28  | -0.17  | -0.34  | -0.78  | 17.30                      | 17.46                                             | 17.16  | 16.87  |
| Val (CH <sub>3</sub> CH <sub>2</sub> CH-)             | -0.76  | -0.84  | -0.82  | -1.44  | 47.27                      | 47.28                                             | 47.19  | 46.75  |
| $w_1 = 0.0075$                                        |        |        |        |        |                            |                                                   |        |        |
| $\mathrm{NH_3}^+,\mathrm{COO}^-$                      | 0.24   | 1.26   | -0.31  | 1.53   | _                          | -                                                 | _      | _      |
| (CH)                                                  | -0.08  | -0.18  | -0.10  | -0.17  | _                          | -                                                 | _      | _      |
| Gly (CH <sub>2</sub> )                                | -0.16  | -0.37  | -0.19  | -0.35  | _                          | -                                                 | _      | _      |
| $(CH_3)$                                              | -0.24  | -0.55  | -0.29  | -0.52  | _                          | -                                                 | -      | _      |
| Ala (CH <sub>3</sub> CH-)                             | -0.13  | -0.39  | -0.09  | -0.41  | 17.36                      | 17.53                                             | 17.27  | 17.06  |
| Val (CH <sub>3</sub> CH <sub>2</sub> CH-)             | -0.44  | -1.12  | -0.46  | -1.10  | 47.50                      | 47.59                                             | 47.03  | 46.91  |
| $w_I = 0.01$                                          |        |        |        |        |                            |                                                   |        |        |
| NH <sub>3</sub> <sup>+</sup> , COO <sup>-</sup>       | 0.58   | 0.58   | 1.24   | 1.65   | _                          | _                                                 | _      | _      |
| (CH)                                                  | -0.13  | -0.06  | -0.12  | -0.14  | _                          | _                                                 | _      | _      |
| Gly (CH <sub>2</sub> )                                | -0.26  | -0.13  | -0.24  | -0.28  | _                          | _                                                 | _      | _      |
| (CH <sub>3</sub> )                                    | -0.39  | -0.19  | -0.36  | -0.42  | _                          | -                                                 | _      | _      |
| Ala (CH <sub>3</sub> CH-)                             | 0.02   | -0.06  | -0.23  | -0.64  | 17.61                      | 17.36                                             | 17.27  | 16.96  |
| Val (CH <sub>3</sub> CH <sub>2</sub> CH–)             | -0.47  | -0.30  | -0.69  | -1.20  | 47.57                      | 47.61                                             | 47.32  | 46.94  |

The molar volume of crystals  $\phi_V^0(\text{cryst})$  was calculated using the crystal densities of the amino acids represented by Berlin and Pallansch (1968) at 298.15 K (Gucker et al. 1939). The  $\phi_V^0(\text{elect})$  values can be calculated (Franks et al. 1970) from the intrinsic partial molar volumes of the amino acids  $\phi_V^0(\text{int})$ , and experimentally determined  $\phi_V^0$  values. Thus, number of water molecules hydrated to the amino acids due to electrostriction causes decrease in volume can

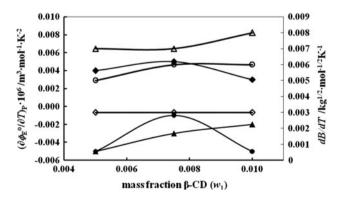



Fig. 4 Plot of  $(\hat{o}\phi_{\rm E}^0/\hat{o}T)_P$  for glycine (filled diamond), alanine (filled triangle), valine (filled circle), and dB/dT for glycine (open diamond), alanine (open triangle), valine (open circle), against studied temp (T) in  $w_1 = 0.01$  mass fraction of aq. β-CD

be related to the hydration numbers (Millero et al. 1978) which is estimated using the following relation

$$n_{H} = \frac{\phi_{V}^{0}(\text{elect})}{(V_{e}^{0} - V_{b}^{0})}$$
 (13)

where  $V_e^0$  is the molar volume of the electrostricted water and  $V_b^0$  is the molar volume of bulk water. This model implies that for every water molecules taken from the bulk phase to the surroundings of amino acid, the volume is decreased by  $(V_e^0 - V_b^0)$ . The value of  $(V_e^0 - V_b^0)$  is calculated (Millero et al. 1978) to be -2.9, -3.0 or -3.3, and -4.0 cm<sup>3</sup> mol<sup>-1</sup> at 293.15, 298.15, and 308.15 K respectively. We are assuming that this average value is  $-3.5 \text{ cm}^3 \text{ mol}^{-1}$  at 303.15 K. The obtained  $n_{\rm H}$  values are listed in Table 6, where  $n_{\rm H}$  varies with the solvent composition, showing a tendency to decrease with an increase in the mass fraction  $(w_1)$  of  $\beta$ -CD, as well as temperature for all the amino acids under investigation. The observed decreasing tendency of  $n_{\rm H}$  supports the view (Owaga et al. 1984) that the  $\beta$ -CD has a dehydration effect on these amino acids in aqueous β-CD solutions. Thus, calculated values of  $n_{\rm H}$  for the amino acids in aqueous  $\beta$ -CD are observed to vary in the following order:

 $n_H$  (glycine)  $> n_H$  (L-alanine)  $> n_H$  (L-valine)



The positive sign of the transfer volumes can be ascribed mainly to the fact that the hydration number  $n_H$  of the amino acids is reduced by the addition of  $\beta$ -CD; i.e., the electrostriction effect which brings about the shrinking in the volume of the solvent caused by the electric field of the dipolar solutes is reduced in the mixture as compared to that in pure water.

The schematic representation of solute–solvent interaction, for the studied amino acids in aqueous  $\beta$ -cyclodextrine binary mixtures, in view of various derived parameters is depicted in Scheme 3, where  $w_1$  is the mass fraction of  $\beta$ -CD in aqueous solution.

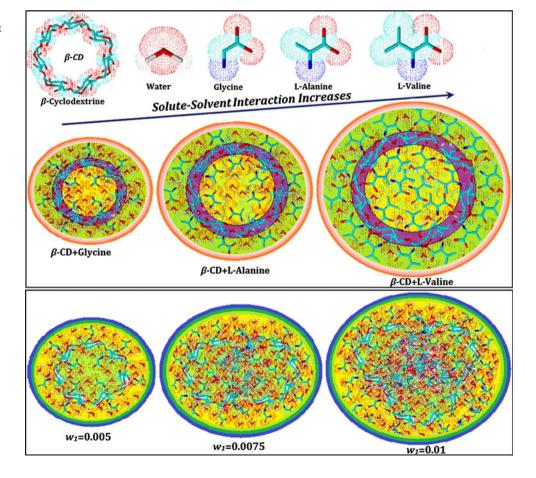
Temperature-dependent limiting apparent molar volume

The variation of  $\phi_V^0$  with the temperature of the amino acids in aqueous  $\beta$ -CD mixture can be expressed by the general polynomial equation as follows,

$$\phi_{\rm V}^0 = a_0 + a_1 T + a_2 T^2 \tag{14}$$

where  $a_0$ ,  $a_1$ ,  $a_2$  are the empirical coefficients depending on the solute, mass fraction  $(w_1)$  of the cosolute  $\beta$ -CD, and T is the temperature range under study in Kelvin. The values of these coefficients of the above equation for the

amino acids in aqueous  $\beta$ -CD mixtures are reported in Table 8.


The limiting apparent molar expansibilities,  $\phi_{\rm E}^0$ , can be obtained by the following equation,

$$\phi_{\rm F}^0 = (\delta \phi_{\rm V}^0 / \delta T)_{\rm p} = a_1 + 2a_2 T \tag{15}$$

The limiting apparent molar expansibilities,  $\phi_E^0$ , change in magnitude with the change of temperature. The values of  $\phi_E^0$  for different solutions of the studied amino acids at (293.15, 298.15, 303.15, and 308.15 K) are reported in Table 9. The table reveals that  $\phi_E^0$  is positive for all the amino acids in aqueous  $\beta$ -CD and studied temperature. This fact can ascribed to the absence of caging or packing effect (Millero 1972) for the amino acids in solutions.

During the past few years it has been emphasized by different workers that  $S_{\rm V}^*$  is not the sole criterion for determining the structure-making or -breaking nature of any solute. Hepler (1969) developed a technique of examining the sign of  $\left(\delta\phi_{\rm E}^0/\delta\ T\right)_P$  for the solute in terms of long-range structure-making and -breaking capacity of the solute in the mixed solvent systems using the general thermodynamic expression,

Scheme 3 The schematic representation of solute–solvent interaction, for the studied amino acids in aqueous  $\beta$ -cyclodextrine binary mixtures, where  $w_1$  is the mass fraction of  $\beta$ -CD in aqueous solution





**Table 8** Values of empirical coefficients  $(a_0, a_1, \text{ and } a_2)$  of Eq. 14 for amino acids in different mass fraction of aqueous  $\beta$ -CD  $(w_1)$  at 293.15–308.15 K respectively

| Solvent mixture (w <sub>1</sub> ) | $a_0 \times 10^6$ (m <sup>3</sup> mol <sup>-1</sup> ) | $a_I \times 10^6$<br>(m <sup>3</sup> mol <sup>-1</sup> K <sup>-1</sup> ) | $a_2 \times 10^6$<br>(m <sup>3</sup> mol <sup>-1</sup> K <sup>-2</sup> ) |
|-----------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Glycine + aq.                     | β-CD                                                  |                                                                          |                                                                          |
| 0.0050                            | 208.71                                                | -1.211                                                                   | 0.0022                                                                   |
| 0.0075                            | 234.38                                                | -1.386                                                                   | 0.0025                                                                   |
| 0.0100                            | 141.58                                                | -0.775                                                                   | 0.0015                                                                   |
| Alanine + aq.                     | $\beta$ -CD                                           |                                                                          |                                                                          |
| 0.0050                            | -171.15                                               | 1.463                                                                    | -0.0023                                                                  |
| 0.0075                            | -84.70                                                | 0.876                                                                    | -0.0013                                                                  |
| 0.0100                            | 116.93                                                | -0.455                                                                   | 0.0009                                                                   |
| Valine + aq.                      | ₿-CD                                                  |                                                                          |                                                                          |
| 0.0050                            | -140.86                                               | 1.462                                                                    | -0.0023                                                                  |
| 0.0075                            | 105.90                                                | -0.170                                                                   | 0.0004                                                                   |
| 0.0100                            | -177.46                                               | 1.707                                                                    | -0.0027                                                                  |

$$(\delta\phi_{\rm F}^0/\delta T)_{\rm p} = (\delta^2 \phi_{\rm V}^0/\delta T^2)_{\rm p} = 2a_2 \tag{16}$$

If the sign of  $(\delta\phi_E^0/\delta\ T)_P$  is positive or a small negative, the molecule is a structure-maker; otherwise, it is a structure breaker (Roy et al. 2007). As is evident from Table 9 and Fig. 4, the  $(\delta\phi_E^0/\delta\ T)_P$  values for all amino acids are positive and small negative under investigation are predominantly structure-makers in all of the experimental solutions.

#### Viscosity

The experimental viscosity data for the studied systems are listed in Table 2. The relative viscosity ( $\eta_r$ ) has been analyzed using the Jones–Dole (1929) equation

$$(\eta/\eta_0 - 1)/\sqrt{m} = (\eta_r - 1)/\sqrt{m} = A + B\sqrt{m}$$
 (17)

where  $\eta_r = \eta/\eta_0$ ,  $\eta$  and  $\eta_0$  are the relative viscosities, the viscosities of the ternary solutions (amino acid + aq.  $\beta$ -CD) and binary aqueous mixture (aq.  $\beta$ -CD), and m is the molality of the amino acids in ternary solutions. A and B are empirical constants known as viscosity A- and B-coefficients, which are specific to solute–solute and solute–solvent interactions, respectively. The values of A- and B-coefficients are estimated by least-square method by plotting  $(\eta_r - 1)/\sqrt{m}$  against  $\sqrt{m}$ , and reported in Table 4. The values of the A-coefficient are found to increases slightly with temperature and with the increase in mass of  $\beta$ -CD in the solvent mixture. These results indicate the presence of very weak solute–solute interactions. These results are in excellent agreement with those obtained from  $S_V^*$  values.

The extent of solute–solvent interaction in the solution estimated from the viscosity *B*-coefficient (Millero 1971)

**Table 9** Limiting apparent molal expansibilities  $(\phi_E^0)$  for amino acids in different mass fraction of aqueous  $\beta$ -CD  $(w_I)$  at 293.15–308.15 K respectively

| Solvent mixture (w <sub>1</sub> ) | $\phi_{\rm E}^0 	imes 10$ | ) <sup>6</sup> (m <sup>3</sup> mo | $(\partial \phi_{\rm E}^0/\partial T)_P \times 10^6$<br>$({\rm m}^3~{\rm mol}^{-1}~{\rm K}^{-2})$ |        |        |
|-----------------------------------|---------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------|--------|--------|
| $T(\mathbf{K})$ :                 | 293.15                    | 298.15                            | 303.15                                                                                            | 308.15 |        |
| Glycine +                         | aq. β-CD                  |                                   |                                                                                                   |        |        |
| 0.0050                            | 0.079                     | 0.101                             | 0.123                                                                                             | 0.145  | 0.004  |
| 0.0075                            | 0.080                     | 0.105                             | 0.130                                                                                             | 0.155  | 0.005  |
| 0.0100                            | 0.104                     | 0.119                             | 0.134                                                                                             | 0.149  | 0.003  |
| Alanine +                         | aq. β-CD                  |                                   |                                                                                                   |        |        |
| 0.0050                            | 0.115                     | 0.092                             | 0.069                                                                                             | 0.046  | -0.005 |
| 0.0075                            | 0.114                     | 0.101                             | 0.088                                                                                             | 0.075  | -0.003 |
| 0.0100                            | 0.072                     | 0.081                             | 0.090                                                                                             | 0.099  | -0.002 |
| Valine + a                        | q. β-CD                   |                                   |                                                                                                   |        |        |
| 0.0050                            | 0.114                     | 0.091                             | 0.068                                                                                             | 0.045  | -0.005 |
| 0.0075                            | 0.065                     | 0.069                             | 0.073                                                                                             | 0.077  | -0.001 |
| 0.0100                            | 0.124                     | 0.097                             | 0.070                                                                                             | 0.043  | -0.005 |

gives valuable information concerning the solvation of the solvated solutes and their effects on the structure of the solvent in the local vicinity of the solute molecules in the solutions. From Table 4 and Fig. 2, it is evident that the values of the B-coefficient are positive and much higher than A-coefficient, thereby suggesting the solute-solvent interactions are dominant over the solute-solute interactions. The higher B-coefficient values for higher viscosity values are due to the solvated solute molecules associated with the solvent molecules, all round the formation of associated molecule by solute-solvent interaction would present greater resistance, and this type of interactions is strengthened with a rise in temperature and also increases with an increase of mass fraction  $(w_1)$  of  $\beta$ -CD in the solvent mixtures. These results are in good agreement with those obtained from  $\phi_{\mathrm{V}}^{\,0}$  values discussed earlier in "Apparent molar volume" section.

The Table 4 also shows that B-coefficients for all the amino acids increase with the increase of the size of the side chains. The B-coefficients reflect the net structural effects of the charged groups and the hydrophobic  $CH_2$ -groups of the amino acids. As B-coefficients vary linearly with the number of carbon atoms of the alkyl chain  $(n_c)$ , these two effects can be resolved as follows

$$B = B(NH_3^+, COO^-) + n_c B(CH_2)$$
(18)

The regression parameters, i.e., the zwitterionic group contribution  $B(\mathrm{NH_3}^+, \mathrm{COO}^-)$ , and the methylene group contribution  $B(\mathrm{CH_2})$ , to B-coefficients are listed in Table 10. It shows that both the  $B(\mathrm{NH_3}^+, \mathrm{COO}^-)$  and  $B(\mathrm{CH_2})$  values increase with increasing concentration  $(w_1)$  of  $\beta$ -CD in ternary solutions, indicating that the



zwitterionic and  $CH_{2}$ – group enhances the structure to solute–solvent interaction in the aqueous salt solutions. The side chain contributions to B-coefficients, B(R), have also been derived using the same scheme as that of  $\phi_{V}^{0}(R)$  and are listed in Table 10, which shows that B(R) values are positive and greater for L-valine than L-alanine in all the experimental temperatures and concentrations of solution. This order is due to the greater structure-making tendency and these findings are in line with our volumetric results discussed earlier.

Table 4 shows that the values of the B coefficients of all amino acids slightly increase with increasing temperature, i.e., the dB/dT values are positive. From Table 11 and Fig. 4, small positive dB/dT values for the present amino acids behave almost as structure-makers. Moreover, it is interesting to note that the B-coefficients of the studied amino acids show a linear correlation with the limiting partial molar volumes  $\phi_V^0$  for the amino acids in aqueous  $\beta$ -CD solution. This means

$$B = A_1 + A_2 \phi_{V}^0. (19)$$

The coefficients  $A_1$  and  $A_2$  are included in Table 11. This correlation is not unexpected, as both the viscosity B-coefficient and the partial molar volume reflect the solute–solvent interactions in the solutions. The positive slope (or  $A_2$ ) shows the linear variation of B-coefficient with limiting apparent molar volumes  $\phi_V^0$ . A similar correlation

Table 10 Contributions of zwitter ionic group  $(NH_3^+, COO^-)$ ,  $CH_2$  group, and the other alkyl chains to the *B*-coefficient in different mass fraction of aqueous β-CD  $(w_1)$  at 293.15–308.15 K respectively

was also used for amino acids in different solvents (Banipal et al. 2004; Yan et al. 2002).

## Ultrasonic speed

Apparent molar isentropic compressibility

The adiabatic compressibility, defined by the thermodynamic relation

$$\beta_{\rm s} = -\frac{1}{V} \left( \frac{\partial V}{\partial P} \right)_{\rm S} \tag{20}$$

where V is volume, P is pressure, and S is entropy, is related to the solution density  $\rho$ , and the ultrasonic speed (u), by the Newton-Laplace's equation:

$$\beta_{\rm s} = 1/u^2 \rho \tag{21}$$

providing the relation between thermodynamics and acoustics. The apparent molar adiabatic compressibility  $(\phi_K)$  of the solutions was determined from the following relation

$$\phi_{K} = M\beta_{s}/\rho + 1,000(\beta_{s}\rho_{0} - \beta_{0}\rho)/m\rho\rho_{0}$$
 (22)

where  $\beta_0$  and  $\beta_s$  are the adiabatic compressibility of the binary mixture and ternary solution, respectively, and m is the molality of the ternary solution. The values of  $\phi_K$  are

| $B \text{ (kg}^{1/2} \text{ mol}^{-1/2})$ |        |        |        |        | $B(R) (kg^{1/2} mol^{-1/2})$ |        |        |        |
|-------------------------------------------|--------|--------|--------|--------|------------------------------|--------|--------|--------|
| Temp (K):                                 | 293.15 | 298.15 | 303.15 | 308.15 | 293.15                       | 298.15 | 303.15 | 308.15 |
| $w_1 = 0.005$                             |        |        |        |        |                              |        |        |        |
| $\mathrm{NH_3}^+, \mathrm{COO}^-$         | 0.317  | 0.395  | 0.477  | 0.575  | _                            | _      | _      | -      |
| (CH)                                      | 0.102  | 0.110  | 0.119  | 0.121  | _                            | _      | _      | -      |
| Gly (CH <sub>2</sub> )                    | 0.205  | 0.221  | 0.237  | 0.242  | _                            | _      | _      | -      |
| (CH <sub>3</sub> )                        | 0.307  | 0.331  | 0.356  | 0.362  | _                            | _      | _      | -      |
| Ala (CH <sub>3</sub> CH–)                 | 0.476  | 0.507  | 0.536  | 0.563  | 0.272                        | 0.286  | 0.299  | 0.321  |
| Val (CH <sub>3</sub> CH <sub>2</sub> CH–) | 0.886  | 0.948  | 1.011  | 1.048  | 0.681                        | 0.728  | 0.774  | 0.806  |
| $w_I = 0.0075$                            |        |        |        |        |                              |        |        |        |
| $\mathrm{NH_3}^+, \mathrm{COO}^-$         | 0.386  | 0.480  | 0.548  | 0.650  | _                            | _      | _      | -      |
| (CH)                                      | 0.091  | 0.094  | 0.105  | 0.109  | _                            | _      | _      | -      |
| Gly (CH <sub>2</sub> )                    | 0.181  | 0.188  | 0.210  | 0.219  | _                            | _      | _      | -      |
| (CH <sub>3</sub> )                        | 0.272  | 0.283  | 0.316  | 0.328  | _                            | _      | _      | -      |
| Ala (CH <sub>3</sub> CH–)                 | 0.480  | 0.491  | 0.523  | 0.554  | 0.299                        | 0.302  | 0.313  | 0.335  |
| Val (CH <sub>3</sub> CH <sub>2</sub> CH–) | 0.844  | 0.870  | 0.945  | 0.994  | 0.663                        | 0.682  | 0.735  | 0.775  |
| $w_1 = 0.01$                              |        |        |        |        |                              |        |        |        |
| $\mathrm{NH_3}^+, \mathrm{COO}^-$         | 0.426  | 0.552  | 0.651  | 0.727  | _                            | _      | _      | -      |
| (CH)                                      | 0.099  | 0.097  | 0.093  | 0.100  | _                            | _      | _      | -      |
| Gly (CH <sub>2</sub> )                    | 0.198  | 0.194  | 0.185  | 0.199  | _                            | _      | _      | -      |
| (CH <sub>3</sub> )                        | 0.296  | 0.290  | 0.278  | 0.299  | -                            | -      | -      | -      |
| Ala (CH <sub>3</sub> CH–)                 | 0.504  | 0.484  | 0.503  | 0.524  | 0.306                        | 0.291  | 0.317  | 0.324  |
| Val (CH <sub>3</sub> CH <sub>2</sub> CH–) | 0.900  | 0.872  | 0.875  | 0.924  | 0.702                        | 0.678  | 0.690  | 0.724  |



**Table 11** Values of dB/dT,  $A_1$ , and  $A_2$  coefficients for the amino acids in different mass fraction of aqueous  $\beta$ -CD  $(w_1)$  at 293.15–308.15 K respectively

| Solvent mixture $(w_1)$    | $\mathrm{d}B/\mathrm{d}T$ | $A_1$  | $A_2$ |
|----------------------------|---------------------------|--------|-------|
| Glycine + $aq. \beta$ -CD  |                           |        |       |
| 0.0050                     | 0.003                     | -1.352 | 0.034 |
| 0.0075                     | 0.003                     | -5.446 | 0.094 |
| 0.0100                     | 0.003                     | -5.884 | 0.069 |
| Alanine + $aq. \beta$ -CD  |                           |        |       |
| 0.0050                     | 0.007                     | -1.176 | 0.030 |
| 0.0075                     | 0.007                     | -4.464 | 0.078 |
| 0.0100                     | 0.008                     | -7.210 | 0.084 |
| Valine $+$ aq. $\beta$ -CD |                           |        |       |
| 0.0050                     | 0.005                     | -1.149 | 0.030 |
| 0.0075                     | 0.006                     | -5.246 | 0.090 |
| 0.0100                     | 0.006                     | -6.802 | 0.079 |

reported in Table 3. Limiting apparent molar adiabatic compressibilities  $(\phi_K^0)$  or apparent molar adiabatic compressibility at infinite dilution and experimental slopes  $(S_K^*)$  were obtained by fitting  $\phi_K$  against the square root of concentration  $(\sqrt{m})$  using the least-squares method (Roy et al. 2011)

$$\phi_{\mathbf{K}} = \phi_{\mathbf{K}}^0 + S_{\mathbf{K}}^* \sqrt{\mathbf{m}}.\tag{23}$$

The values of  $\phi_K^0$  and  $S_K^*$  are presented in Table 4. The values of  $\phi_K^0$  and  $S_K^*$  are important parameters that provided information about the extent of solute–solvent and solute–solute interaction, respectively. The behaviour is useful in characterization of solvation and electrostriction (the contraction of the solvent around the solute) of salt in solutions.

From Table 4 and Figs. 1, 2, and 3, it is observed that the value of limiting apparent molar isentropic compressibility  $\phi_K^0$  is positive and increases with the increase in concentration  $(w_1)$  of  $\beta$ -CD for all the studied solution, and shows the stronger solute–solvent interaction. The result is good agreement with the  $\phi_V^0$  value discussed earlier.

At neutral pH, amino acid exists as zwitterions when dissolved in water and there is an overall decrease in the volume of water. This is due to the contraction of water near the end charged groups, termed as electrostriction. Hence, the electrostricted water is much less compressible than bulk water and accounts for the apparent molar compressibilities for the amino acids in mixed ternary solutions being larger than the corresponding ones in water. It is also observed that the values of  $\phi_K^0$  for the studied amino acids follow the order:

glycine < L-alanine < L-valine

Since the contribution of methylene group to the apparent compressibility is positive, it implies that the ions having the larger hydrophobic group may have more positive values for the partial molal expansibilities. Hence, L-valine may have largest hydrophobic group resulting higher values of  $\phi_K^0$ .

Hydration number from apparent molar isentropic compressibility

The limiting partial molar adiabatic compressibilities of the amino acids also can be expressed by a simple model (Millero et al. 1978)

$$\phi_{K}^{0} = \phi_{K}^{0}(\text{int}) + \phi_{K}^{0}(\text{elect}) \tag{24}$$

where  $\phi_K^0(\text{int})$  is the intrinsic partial molar adiabatic compressibility of the amino acid and  $\phi_K^0(\text{elect})$  is the electrostriction partial molar adiabatic compressibility due to the hydration of the amino acid. As has been noted by Millero et al. (1978), as a first approximation, one can assume that  $\phi_K^0(\text{int}) \approx 0$ , since one would expect  $\phi_K^0(\text{int})$  to very small (Millero et al. 1978). Thus  $\phi_K^0$  may be thought to represent  $\phi_K^0(\text{elect})$ . The  $\phi_K^0$  values of the amino acids in water are all positive; this must come from the hydration of the charged centres of the amino acids, as the hydrated water molecules are already compressed and than that in the bulk. For the amino acids, the order of increasing  $\phi_K^0$  values as well as hydration number  $n_H$  in aqueous  $\beta$ -CD is

glycine < L-alanine < L-valine

and reported in Table 6. This sequence may be considered to show a decreasing order of hydration, as a first approximation, particularly for the amino acids without the -OH group of  $\beta$ -CD, as will be mentioned below. In Table 6, the observed decreasing tendency of  $n_{\rm H}$  for glycine and L-alanine supports the view (Owaga et al. 1984) that the  $\beta$ -CD has a dehydration effect on these amino acids in aqueous solutions. In case of L-valine, a slight increase of  $n_{\rm H}$  indicates that the increase in the interaction of hydrophobic groups of L-valine with those of the salt does not reduce the electrostriction of water molecules to it.

As has been noted by Mathieson and Conway (1974), ions with a slight hydrogen-bond with water have unusual compressibility. This corresponds to the order of increasing absolute values of  $\phi_K^0$  in aqueous  $\beta$ -CD, which answers to the order of increasing hydration numbers. Thus, the less hydrated amino acids in water has the lower compressibility ratio in the mixed solvent and then loses hydrated water molecules more easily in the transfer from water to the mixed solvent.



**Table 12** Values of  $\phi_1^0$ ,  $\phi_V^0$  (aqueous),  $\mu^{0\#}$ ,  $T\Delta S^*$ ,  $\Delta H^\#$  for amino acids in different mass fraction of aqueous β-CD  $(w_1)$  at 293.15–308.15 K respectively

| Temp (K)         | Parameters                                                   |                                                  |                                           |                                         |                                               |                                         |  |  |
|------------------|--------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------|--|--|
|                  | $\phi_1^0 \times 10^6 \text{ (m}^3 \text{ mol}^{-1}\text{)}$ | $\Delta\mu_1^{0\#} \text{ (kJ mol}^{-1}\text{)}$ | $\Delta\mu_2^{0\#} \text{ (kJ mol}^{-1})$ | $\Delta\mu^{0\#} \text{ (kJ mol}^{-1})$ | $T\Delta S^{\#} \text{ (kJ mol}^{-1}\text{)}$ | $\Delta H^{\#}$ (kJ mol <sup>-1</sup> ) |  |  |
| $w_1 = 0.005$    |                                                              |                                                  |                                           |                                         |                                               |                                         |  |  |
| Glycine          |                                                              |                                                  |                                           |                                         |                                               |                                         |  |  |
| 293.15           | 18.016                                                       | 62.97                                            | 62.98                                     | 62.97                                   | -14.66                                        | 48.31                                   |  |  |
| 298.15           | 18.039                                                       | 62.70                                            | 62.72                                     | 62.70                                   | -14.91                                        | 47.79                                   |  |  |
| 303.15           | 18.062                                                       | 62.45                                            | 62.45                                     | 62.45                                   | -15.16                                        | 47.29                                   |  |  |
| 308.15           | 18.084                                                       | 62.21                                            | 62.20                                     | 62.21                                   | -15.41                                        | 46.80                                   |  |  |
| Alanine          |                                                              |                                                  |                                           |                                         |                                               |                                         |  |  |
| 293.15           | 18.016                                                       | 63.81                                            | 63.82                                     | 63.81                                   | -15.24                                        | 48.57                                   |  |  |
| 298.15           | 18.039                                                       | 63.54                                            | 63.53                                     | 63.53                                   | -15.50                                        | 48.03                                   |  |  |
| 303.15           | 18.062                                                       | 63.28                                            | 63.27                                     | 63.28                                   | -15.76                                        | 47.51                                   |  |  |
| 308.15           | 18.084                                                       | 63.03                                            | 63.03                                     | 63.03                                   | -16.02                                        | 47.01                                   |  |  |
| Valine           |                                                              |                                                  |                                           |                                         |                                               |                                         |  |  |
| 293.15           | 18.016                                                       | 64.83                                            | 64.83                                     | 64.83                                   | -15.24                                        | 49.58                                   |  |  |
| 298.15           | 18.039                                                       | 64.55                                            | 64.55                                     | 64.55                                   | -15.50                                        | 49.04                                   |  |  |
| 303.15           | 18.062                                                       | 64.28                                            | 64.29                                     | 64.28                                   | -15.76                                        | 48.52                                   |  |  |
| 308.15           | 18.084                                                       | 64.04                                            | 64.04                                     | 64.04                                   | -16.02                                        | 48.01                                   |  |  |
| = 0.0075         |                                                              |                                                  |                                           |                                         |                                               |                                         |  |  |
| Glycine          |                                                              |                                                  |                                           |                                         |                                               |                                         |  |  |
| 293.15           | 18.016                                                       | 62.98                                            | 62.98                                     | 62.98                                   | -14.66                                        | 48.32                                   |  |  |
| 298.15           | 18.039                                                       | 62.71                                            | 62.71                                     | 62.71                                   | -14.91                                        | 47.80                                   |  |  |
| 303.15           | 18.062                                                       | 62.45                                            | 62.45                                     | 62.45                                   | -15.16                                        | 47.30                                   |  |  |
| 308.15           | 18.084                                                       | 62.22                                            | 62.22                                     | 62.22                                   | -15.41                                        | 46.81                                   |  |  |
| Alanine          |                                                              | <del></del>                                      | <del></del>                               | V                                       |                                               |                                         |  |  |
| 293.15           | 18.016                                                       | 63.82                                            | 63.82                                     | 63.82                                   | -14.95                                        | 48.87                                   |  |  |
| 298.15           | 18.039                                                       | 63.54                                            | 63.54                                     | 63.54                                   | -15.21                                        | 48.34                                   |  |  |
| 303.15           | 18.062                                                       | 63.28                                            | 63.28                                     | 63.28                                   | -15.46                                        | 47.82                                   |  |  |
| 308.15           | 18.084                                                       | 63.04                                            | 63.04                                     | 63.04                                   | -15.72                                        | 47.33                                   |  |  |
| Valine           | 10.001                                                       | 03.01                                            | 03.01                                     | 03.01                                   | 13.72                                         | 17.55                                   |  |  |
| 293.15           | 18.016                                                       | 64.83                                            | 64.83                                     | 64.83                                   | -14.95                                        | 49.88                                   |  |  |
| 298.15           | 18.039                                                       | 64.55                                            | 64.52                                     | 64.52                                   | -15.21                                        | 49.32                                   |  |  |
| 303.15           | 18.062                                                       | 64.29                                            | 64.26                                     | 64.26                                   | -15.46                                        | 48.80                                   |  |  |
| 308.15           | 18.084                                                       | 64.05                                            | 64.07                                     | 64.07                                   | -15.72                                        | 48.35                                   |  |  |
| $w_1 = 0.01$     | 10.001                                                       | 01.05                                            | 01.07                                     | 01.07                                   | 13.72                                         | 10.55                                   |  |  |
| Glycine          |                                                              |                                                  |                                           |                                         |                                               |                                         |  |  |
| 293.15           | 18.016                                                       | 62.98                                            | 62.98                                     | 62.98                                   | -14.66                                        | 48.33                                   |  |  |
| 298.15           | 18.039                                                       | 62.71                                            | 62.71                                     | 62.71                                   | -14.91                                        | 47.81                                   |  |  |
| 303.15           | 18.062                                                       | 62.46                                            | 62.46                                     | 62.46                                   | -15.16                                        | 47.30                                   |  |  |
| 308.15           | 18.084                                                       | 62.22                                            | 62.22                                     | 62.22                                   | -15.41                                        | 46.82                                   |  |  |
| Alanine          | 10.004                                                       | 02.22                                            | 02.22                                     | 02.22                                   | -13.41                                        | 40.62                                   |  |  |
| 293.15           | 18.016                                                       | 63.82                                            | 63.82                                     | 63.82                                   | -14.95                                        | 48.87                                   |  |  |
| 293.13           | 18.039                                                       | 63.55                                            | 63.55                                     | 63.55                                   | -14.93<br>-15.21                              | 48.34                                   |  |  |
|                  |                                                              |                                                  | 63.29                                     |                                         |                                               |                                         |  |  |
| 303.15           | 18.062                                                       | 63.29                                            |                                           | 63.29                                   | -15.46                                        | 47.83                                   |  |  |
| 308.15           | 18.084                                                       | 63.05                                            | 63.05                                     | 63.05                                   | -15.72                                        | 47.33                                   |  |  |
| Valine           | 19.016                                                       | 64.94                                            | 64.95                                     | 64.95                                   | 14.05                                         | 40.00                                   |  |  |
| 293.15<br>298.15 | 18.016<br>18.039                                             | 64.84<br>64.56                                   | 64.85<br>64.56                            | 64.85<br>64.56                          | -14.95<br>-15.21                              | 49.90<br>49.36                          |  |  |



Table 12 continued

| Temp (K) | Parameters                                                |                                                  |                                                  |                                                |                                               |                                              |  |
|----------|-----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------------|--|
|          | $\phi_1^0 \times 10^6 \; (\text{m}^3 \; \text{mol}^{-1})$ | $\Delta\mu_1^{0\#} \text{ (kJ mol}^{-1}\text{)}$ | $\Delta\mu_2^{0\#} \text{ (kJ mol}^{-1}\text{)}$ | $\Delta\mu^{0\#} \text{ (kJ mol}^{-1}\text{)}$ | $T\Delta S^{\#} \text{ (kJ mol}^{-1}\text{)}$ | $\Delta H^{\#} \text{ (kJ mol}^{-1}\text{)}$ |  |
| 303.15   | 18.062                                                    | 64.30                                            | 64.30                                            | 64.30                                          | -15.46                                        | 48.84                                        |  |
| 308.15   | 18.084                                                    | 64.05                                            | 64.06                                            | 64.06                                          | -15.72                                        | 48.34                                        |  |

## Other thermodynamic properties

According to Glasstone et al. (1941), the free energy of activation of viscous flow per mole of solvent,  $\Delta \mu_1^{0\#}$ , can be calculated using the equation:

$$\eta_0 = (hN_A/\bar{V}_1^0) \exp(\Delta\mu_1^{0\#}/RT)$$
(25)

where h,  $N_{\rm A}$ , and  $\bar{V}_{\rm I}^0(=\phi_{\rm I}^0)$  are the Planck constant, Avogadro number and partial molar volumes of the solvent, respectively. Feakins et al. (1974) applied the transition state treatment of relative viscosity to solutions and showed that the B-coefficient is given as:

$$B = (\bar{V}_1^0 - \bar{V}_2^0)/1,000 + \bar{V}_2^0[(\Delta \mu_2^{0\#} - \Delta \mu_1^{0\#})/RT]/1,000$$
(26)

where  $\bar{V}_2^0(=\phi_V^0)$  is the partial molar volume of the solute (amino acid) and  $\Delta\mu_2^{0\#}$  is the contribution per mole of the solute to the free energy of activation of viscous flow of the solution. On rearranging Eqs. (25) and (26), the values of  $\Delta\mu_2^{0\#}$  and  $\Delta\mu_1^{0\#}$  are obtained as:

$$\Delta \mu_1^{0\#} = RT \ln(\eta_0 \bar{V}_1^0 / h N_{\rm A}) \tag{27}$$

$$\Delta \mu_2^{0\#} = \Delta \mu_1^{0\#} + (RT/\bar{V}_1^0) \left[ 1,000B - (\bar{V}_1^0 - \bar{V}_2^0) \right]$$
 (28)

The values  $\Delta\mu_2^{0\#}$  and  $\Delta\mu_1^{0\#}$  for the amino acids in aqueous  $\beta$ -CD at 293.15, 298.15, 303.15 and 308.15 K are listed in Table 12. The total free energy of activation of viscous flow of the solution,  $\Delta\mu^{0\#}$ , was calculated from the relation:

$$\Delta \mu^{0\#} = n_1 \Delta \mu_1^{0\#} + n_2 \Delta \mu_2^{0\#} \tag{29}$$

where  $n_1$  and  $n_2$  are the number of moles of mixed solvent and solute, respectively. The values of  $\Delta \mu^{0\#}$  are presented in Table 12. The thermodynamic data,  $\Delta H^*$ , and  $\Delta S^*$  of all the amino acids in aqueous  $\beta$ -CD were calculated using the following equation and are listed in Table 12:

$$\Delta \mu^{0\#} = \Delta H^* - T\Delta S^* \tag{30}$$

The  $\Delta H^*$  and  $\Delta S^*$  values were obtained from the intercepts and slopes of the plots of  $\Delta \mu^{0\#}$  versus T.  $\Delta H^*$  and  $\Delta S^*$  values have proved useful in yielding structural information about solute species and about solute–solvent interactions.

It is evident from the data in Table 12 that  $\Delta \mu_1^{0\#}$  and  $\Delta\mu_2^{0\#}$  values are positive and almost same, for all the solvent composition. This may be due to the fact that amino acid-cosolute interactions in the ground state are almost in the transition state. In other words, the solvation of amino acids in the transition state is also favourable in terms of free energy. As  $\Delta\mu_2^{0\#}\cong\Delta\mu_1^{0\#}$  then according to the Feakins model (1974), the solutes (amino acids) behave as structure-makers. This again supports the behaviour of dB/ dT for these solutes in aqueous β-CD. The  $\Delta \mu_2^{0\#}$  values (Table 12) of the amino acids were found to increase from glycine to L-valine at a given temperature. This indicates that the solvation of the amino acids in the ground state becomes increasingly favourable as the hydrophobicity (number of carbon atoms) of the side chain increases from glycine to L-valine.

The values of the activation enthalpy,  $\Delta H^*$  and entropy,  $\Delta S^*$ , calculated using eq. (30) of the amino acids + aqueous  $\beta$ -CD mixtures are listed in Table 12. The data reveal that the  $\Delta H^*$  values of the ternary mixtures are positive, thereby, suggesting that the formation of activated species for viscous flow becomes difficult as the amount of amino acid in the mixtures increases. The negative values of  $T\Delta S^*$ , which increase with increasing concentration of amino acids, for all the studied mixtures, suggest that the net order of the system decreases as the concentration of amino acid in the mixture increases. Thus, the behaviour of  $T\Delta S^*$  supports that of  $\Delta H^*$ . The  $\Delta H^*$  and  $\Delta S^*$  quantities contain contributions from the following processes:

- formation of the solute-cosolute interaction due to non-covalent interactions (H-binding, van der Waals forces, hydrophobic and electrostatic interactions, and steric effects),
- (ii) dehydration of the cosolutes during the molecular interactions,
- (iii) hydration of the complex, and
- (iv) conformation changes (Liu and Guo 2002).

The predominance of items (i)–(iii) during these processes determines the negative values for the entropy of interaction. The contribution from process (iv) cannot be considerable because the  $\beta$ -cyclodextrin molecule is not flexible and cannot change conformation upon binding



with a guest molecule, it itself retain the same conformation before and after the interaction with amino acids.

## Structural effect of the cosolute \( \beta \cdot CD \)

The structure is a novel packing of  $\beta$ -CD monomers that is less compact (2,300 Å<sup>3</sup> per  $\beta$ -CD) than known monomeric ( $\approx 1,500-1,750$  Å<sup>3</sup>) or dimeric ( $\approx 1,800$  Å<sup>3</sup>) structures.

In the first X-ray crystal structure, which was determined on a crystal in contact with mother liquor, about seven disordered water molecules may be located in each β-CD cavity, and five more water molecules in interstitial sites between the β-CD macrocycles resulting in an overall composition  $\beta$ -CD (12 of 0.5) $H_2O^6$  (16 wt %  $H_2O$ ). In the neutron diffraction study (Betzel et al. 1984) (in which not all of the weakly populated water sites were located), at room temperature, most water molecules and hydroxyl groups of β-CD are orientationally disordered and alternately form hydrogen bonds with different neighbours. This disorder is highly dynamic, i.e., associated with rapid flips of O-H groups between discrete alternative orientations ("flip-flop" bonds). Very similar disorders of solvent molecules and hydroxyl groups were described for the complex β-CD-ethanol octahydrate.

Inclusion complexes are in fact energy favourable, since water molecules from the cavity are displaced by hydrophobic guest molecules to obtain an apolar-apolar interaction and decrease the cyclodextrin ring strain, thereby leading to a more stable lower energy state. The complexation strength depends on the factors such as the size of the guest molecule, the van der Waals interactions, the release of water molecules, hydrogen bonding, charge transfer interactions, hydrophobic interactions, the release of conformational strain, etc. (Loftsson et al. 2005). With considering the above factors,  $\beta$ -CD are proposed in such a way that the interaction with amino acids, the solute-solvent interaction is higher for L-valine than L-alanine which is also turn higher than glycine, this is also due to the +I effect. +I effect increases as alkyl chain group increases from glycine to L-valine, is more favourably complex, with retention of configuration of β-CD itself.

# Conclusion

Extensive study of thermophysical and thermodynamic properties of simple amino acids in aqueous  $\beta$ -CD binary mixture was done. It is evident that in the association of the investigated amino acids, the L-valine is greater than L-alanine which is, in turn, greater than that glycine. The reliable values of derivative obtained from the studies of thermophysical properties suggest that the solute–solvent

interaction is dominant over the solute–solute interaction in solutions. The structural effect of  $\beta$ -CD gives the favourable support in the molecular interaction with retention of configuration. Above all, this study demands a novelty of some amino acids prevailing in the aqueous solutions of  $\beta$ -CD.

Acknowledgments The authors are grateful to the Departmental Special Assistance Scheme, Department of Chemistry, NBU under the University Grants Commission, New Delhi (No. 540/27/DRS/2007, SAP-1) for financial support and instrumental facilities in order to continue this research work. One of the authors, Prof. Mahendra Nath Roy, is thankful to University Grants Commission, New Delhi for supporting this work through one time grant award under Basic Scientific Research via the grant-in-aid No. F.4-10/2010 (BSR).

**Conflict of interest** The authors declare that they have no conflict of interest.

#### References

- Banerjee T, Kishore N (2005) Interactions of some amino acids with aqueous tetraethylammonium bromide at 298.15 K: a volumetric approach. J Solut Chem 35:137
- Banipal TS, Singh G, Lark BS (2001) Partial molar volumes of transfer of some amino acids from water to aqueous glycerol solutions at 25 °C. J Solut Chem 30:65
- Banipal TS, Kaur D, Banipal PK (2004) Apparent molar volumes and viscosities of some amino acids in aqueous sodium acetate solutions at 298.15 K. J Chem Eng Data 49:1236
- Belibagli K, Agranci E (1990) Viscosities and apparent molar volumes of some amino acids in water and 6 M Guanidine hydrochloride at 25 °C. J Solut Chem 19:867
- Berlin E, Pallansch MJ (1968) Densities of several proteins and Lamino acids in the dry state. J Phys Chem 72:1887
- Betzel C, Saenger W, Hingerty BE, Brown GM (1984) Topography of cyclodextrin inclusion complexes, part 20. Circular and flip–flop hydrogen bonding in beta-cyclodextrin undecahydrate: a neutron diffraction study. J Am Chem Soc 106:7545
- Bhat R, Ahluwalia JC (1985) Partial molar heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K. J Phys Chem 89:1099
- Clarke RJ, Coates JH, Lincoln SF (1988) Inclusion Complexes of the Cyclomalto-Oligosaccharides (Cyclodextrins). Adv Carbohydr Chem Biochem 46:205
- Disouza VT, Lipkowitz KB (1998) Cyclodextrins: introduction. Chem Rev 98:1741
- Enea O, Jolicoeur C (1982) Heat capacities and volumes of several oligopeptides in urea-water mixtures at 25 °C. Some implications for protein unfolding. J Phys Chem 86:3870
- Feakins D, Freemantle DJ, Lawrence KG (1974) Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous, non-aqueous and methanol + water systems. J Chem Soc Faraday Trans I(70):795
- Franks F, Quickenden MA, Reid DS, Watson B (1970) Calorimetric and volumetric studies of dilute aqueous solutions of cyclic ethers derivatives. Trans Faraday Soc 66:582
- Freyer EB, Hubbard JD, Andrews DH (1929) Sonic studies of the physical properties of liquids. I. The sonic interferometer. the velocity of sound in some organic liquids and their compressibilities. J Am Chem Soc 51:759
- Friedman HL, Krishnan CV (1973) In: Franks F (ed) Water: a comprehensive treatise, vol 3, chapter 1. Plenum, New York



- Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw Hill, New York
- Gucker FT, Ford WL, Moser CE (1939) The apparent and partial molal heat capacities and volumes of Glycine and Glycolamide. J Phys Chem 43:153
- Helper LG (1969) Studies on viscosities and densities of R4NX in ME + water mixtures of different temperatures. Can J Chem 47:4613
- Hippel PHV, Schleich T (1969) The effects of neutral salts on the structure and conformational stability of macromolecules in solution. In: Timasheff SN, Fasman GD (eds) Structure and stability of biological macromolecules. Marcel Dekker Inc, New York, pp 417
- Jencks WP (1969) Catalysis in chemistry and enzymology. Dover, New York
- Jones G, Dole D (1929) The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J Am Chem Soc 51:2950
- Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1-63
- Kiyohara O, Grolier JPE, Benson GC (1974) Excess volumes, ultrasonic velocities, and adiabatic compressibilities for binary cycloalkanol mixtures at 25 °C. Can J Chem 52:2287
- Kumar A, Venkatesu P (2012) Overview of the stability of αchymotrypsin in different solvent media. Chem Rev 112:4283
- Li S, Purdy WC (1992) Cyclodextrins and their applications in analytical-chemistry. Chem Rev 92:1457–1470
- Li S, Hu X, Lin R, Sang W, Fang W (2001) Transfer volumes of glycine, L-alanine and L-serine in glycerol-water mixtures at 25 °C. J Solut Chem 30:365
- Liu L, Guo QX (2002) The driving forces in the inclusion complexation of cyclodextrins. J Inclu Phen Macrocycl Chem 42:1
- Loftsson T et al (2005) Cyclodextrins in drug delivery. Expert Opinion Drug Delivery 2(2):335
- Marcus Y (1993) Thermodynamics of solvation of ions: Part 6. The standard of partial volumes of aqueous ions at 298.15 K. J Chem Soc Faraday Trans 89:713
- Marcus Y, Hefter G (2004) Standard partial molar volumes of electrolytes and ions in nonaqueous solvents. Chem Rev 104:3405
- Masson DO (1929) Ion-solvent interactions. Philos Mag 8:218
- Mathieson JG, Conway BE (1974) H<sub>2</sub>O–D<sub>2</sub>O solvent isotope effect in the apparent molal volume and compressibility of urea. J Solut Chem 3:781
- Millero FJ (1971) The molal volumes of electrolytes. Chem Rev 71:147
- Millero FJ (1972) The partial molal volumes of electrolytes in aqueous solutions. In: Horne RA (ed) Water and aqueous solutions: structure, thermodynamics, and transport processes. Wiley Interscience, New York, p 519
- Millero FJ, Surdo AL, Shin C (1978) The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J Phys Chem 82:784
- Mishra AK, Ahluwalia JC (1981) Enthalpies, heat capacities and apparent molar volumes of transfer of some amino acids from water to aqueous *t*-butanol. J Chem Soc Faraday Trans I(77):1469
- Mishra AK, Prasad KP, Ahluwalia JC (1983) Apparent molar volumes of some amino acids and peptides in aqueous urea solutions. Biopolymers 22:2397

- Murthy NM, Subrahmanyam SV (1977) Structure of aqueous isomeric butyl alcohols—sound velocity studies. Bull Chem Soc Jpn 50:2589
- Natarajan M, Wadi RK (1990) Apparent molar volumes and viscosities of some R- and R, ö-amino acids in aqueous ammonium chloride solutions at 298.15 K. J Chem Eng Data 35:87
- Owaga T, Mizutami K, Yasuda M (1984) The volume, adiabatic compressibility and viscosity of amino acids in aqueous alkali chloride solutions. Bull Chem Soc Jpn 57:2064
- Rafatia AA, Bagheria A, Iloukhania H, Zarinehzad M (2005) Study of inclusion complex formation between a homologous series of *n*-alkyltrimethylammonium bromides and β-cyclodextrin, using conductometric technique. J Mol Liquids 116:37
- Ribeiro ACF, Esteso MA, Lobo VMM, Valente AJM, Simões SMN, Sobral AJFN, Ramos ML, Burrows HD, Amado AM, D'Costa A (2006) Interactions of copper (II) chloride with cyclodextrin in aqueous solutions at 25 and 37 °C. J Carbohydr Chem 25:173–185
- Roy MN, Dakua VK, Sinha B (2007) Partial molar volumes, viscosity B-coefficients, and adiabatic compressibilities of sodium molybdate in aqueous 1,3-dioxolane mixtures from 303.15 to 323.15 K. Int J Thermophys 28:1275
- Roy MN, Ekka D, Dewan R (2011) Physico-chemical studies of some bio-active solutes in pure methanoic acid. Acta Chim Slov 58:792
- Roy MN, Ekka D, Dewan R (2012) Ionic solvation of tetrabutylammonium hexafluorophosphate in pure nitromethane, 1,3-dioxolane and nitrobenzene: a comparative physicochemical study. Fluid Phase Equilib 314:113
- Szejtli J (1982) The cyclodextrins and their inclusion complexes. Academiai Kiad, Budapest
- Szejtli J (1996) In: Attwood JL, Davies JED, Macnicol DD, Vogtle F (eds) Comprehensive supramolecular chemistry: cyclodextrins, vol 3. Elsevier, Oxford
- Thoma JT, Steward L (1965) In: Whistler RL, Paschall EF (eds) Starch: chemistry and technology, vol 1. Academic Press, New York, p 209
- Van Etten RL, Clowee GA, Sebastian JF, Bender ML (1967a) The mechanism of the cycloamylose-accelerated cleavage of phenyl esters. J Am Chem Soc 89:3253
- Van Etten RL, Sebastian JF, Clowes GA, Bender ML (1967b) Acceleration of phenyl ester cleavage by cycloamyloses. A model for enzymatic specificity. J Am Chem Soc 89:3242
- Wadi RK, Ramasami P (1997) Partial molal volumes and adiabatic compressibilities of transfer of Glycine and DL-alanine from water to aqueous sodium sulfate at 288.15, 298.15 and 308.15 K. J Chem Soc Faraday Trans 93:243
- Wang J, Yan Z, Zhao Y, Cui F (2004) Partial molar volumes and viscosities of some α-amino acids in micellar solutions of sodium caprylate. J Chem Eng Data 49:1354
- Xu L, Ding C, Lin R (2006) Transfer volumes of glycine, L-alanine, and L-serine from water to 1,2-butanediol-water mixtures at 298.15 K. J Solution Chem 35:191
- Yan Z, Wang J, Lu J (2002) Viscosity behavior of some α-amino acids and their groups in water-sodium acetate mixtures. Biophys Chem 99:199

